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Abstract

Quantum path interferences occur whenever multiple equivalent and coherent transitions result
in a common final state. Such interferences strongly modify the probability of a particle to be
found in that final state, a key concept of quantum coherent control. When multiple nonlinear
and energy-degenerate transitions occur in a system, the multitude of possible quantum path
interferences is hard to disentangle experimentally. Here, we analyze quantum path
interferences during the nonlinear emission of electrons from hybrid plasmonic and photonic
fields using time-resolved photoemission electron microscopy. We experimentally distinguish
quantum path interferences by exploiting the momentum difference between photons and
plasmons and through balancing the relative contributions of their respective fields. Our work
provides a fundamental understanding of the nonlinear photon-plasmon-electron interaction.
Distinguishing emission processes in momentum space, as introduced here, will ultimately
allow nano-optical quantum-correlations to be studied without destroying the quantum path
interferences.



Introduction

Quantum path interference occurs when multiple coherent pathways can take a system from an
initial state to a final state, as epitomized in Feynman’s path-integral interpretation [1]. Brumer
and Shapiro realized in the last century that light can be used to create quantum path
interferences in matter [2, 3]. Coherent control of such quantum path interferences has been
demonstrated in photoexcitation experiments [2, 4-13] and, more recently in nonlinear
photoemission [14-19]. In all cases, quantum path interference relies on not knowing which
path a system takes. Measurements aiming at obtaining this information destroy the
interference, as observed in “which-way” experiments [20].

In nonlinear electron emission [21-25] the simultaneous absorption of energy-degenerate
photons and surface plasmon polaritons (SPPs) can create multiple quantum pathways [26-28].
As these pathways result in a common final state, quantum path interferences are expected to
appear in the electron yield. For strong electromagnetic fields, the quantum path interferences
could be derived by treating the electrons quantum mechanically while approximating the
photon and SPP fields as classical fields. However, for a consistent picture these fields must be
treated as quantum fields.

The multitude of possible nonlinear mixings of these different pathways also makes it difficult
to experimentally disentangle the resulting quantum path interferences. Here, in analogy to
optical nonlinear spectroscopy [29, 30], we use in a novel momentum space approach to
separate such quantum path interferences in nonlinear photoemission electron microscopy
(PEEM).

Experimental Details

The experiments were performed in a spectroscopic photoemission and low energy electron
microscope (ELMITEC SPE-LEEM I1I) [31] equipped with a highly-sensitive and linear
electron detector [32]. The microscope is combined with a Ti:Sapphire oscillator (Femtolasers
Femtosource Compact) that provides us with < 15 fs laser pulses with a central wavelength of
800 nm (hw = 1.55eV) at a repetition rate of 80 MHz. We worked in a normal-incidence
geometry [33] and used a Pancharatnam’s phase stabilized Mach-Zehnder-interferometer [34,
35] to create pairs of mutually delayed pump and probe laser pulses with sub-femtosecond
accuracy. The setup is similar to the one used in Ref. [36]. Half-wave plates in each of the two
arms of the interferometer in combination with a Brewster polarization plate at the output of
the interferometer were used to independently tune the power of the pump and the probe laser
pulses while maintaining a common linear polarization axis. Before the laser pulses entered
the microscope, the final linear polarization was adjusted to be perpendicular to a grating
coupler on the sample (cf. Fig. LA) with another, freely adjustable, half-wave plate.

The grating coupler was cut into a single-crystalline Au platelet [37] by focused ion beam
milling (FIB) using a FEI Helios NanoLab 600. The sample was transferred through air into the
microscope and subsequently cleaned by in-situ oxygen plasma etching, Argon ion sputtering,
and degassing at elevated temperature in ultra-high vacuum. Prior to the photoemission
experiments, we lowered the work-function of the sample by deposition of a sub-monolayer of
Cs from a commercial dispenser (SAES Getters) to enable a second-order electron emission
process.



Results

An overview of the experiment is shown in Fig. 1A. A first femtosecond laser pulse (pump
pulse) excites an SPP pulse at the grating coupler. After the SPP has freely propagated for about
80 fs, a subsequent (probe) pulse forms an interaction region where the combined SPP and
photon fields initiate second-order absorption liberating an electron from the surface. A direct
measure of the electron emission yield provides no information about the absorbed quanta,
which one might naively attribute to photon-photon, SPP-SPP, photon-SPP, or SPP-photon
absorption. However, the different propagation directions of the SPP pulse and the laser pulse
at the metal surface result in a significant momentum difference between them (Fig. 1B). Thus,
despite being degenerate in energy, during absorption different combinations of SPPs and
photons are associated with different in-plane field momenta [29, 38, 39] (Fig. 1C). As the key
concept of this work, we will show that these different field momenta provide an electron
emission signature that enables us to experimentally identify and separate quantum path
interferences that arise from the interference of the different absorption processes that are
shown in Fig. 1C.

The interaction region formed by the SPP and the probe laser pulse appears in the PEEM image
as a spatial fringe modulation (Fig. 2A), which is a signature of the propagating SPP pulse at
this particular pump-probe delay. In the classical field picture, this characteristic electron
emission pattern [33, 40, 41] is due to the interference of the SPP and the probe laser field. In
a quantum description, however, such a fringe modulation must be attributed to quantum path
interferences in the electron emission process, as shown in a recent experiment [42] on spin-
orbit mixing of SPPs with orbital angular momentum [43] and circularly polarized light. Since
the period length of the fringe pattern is determined by the SPP wavelength Agpp the pattern is
commonly referred to as a “direct conceptual visualization” of the SPP pulse [33, 44]. A profile
taken through the fringe pattern, however, shows a distinct non-linearity (Fig. 2B), that appears
as a second-order cross-correlation of the pulses. In Fig. 2C, we decompose this profile into
contributions arising from the featureless envelopes of the pulses, contributions with periods
equal to the SPP wavelength, and one contribution with half the SPP wavelength. These
contributions to the nonlinear profile are a direct manifestation of different quantum path
interferences that occur in the electron emission.

To understand the origin of the quantum path interferences, we first consider the probability
amplitude Sg; for the absorption processes depicted in Fig. 1C. As we will show, these processes
are combined to form the discussed quantum path interferences during electron emission. We
describe the emission of an electron by the absorption of two quanta from a joint initial state
|) of the probe laser and the SPP, arriving in a joint final state |¢) of the fields. Based on the
theory of two-photon absorption by Mollow [45] the probability amplitude can be written as
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The details of the second-order transition of the liberated electron and in particular the
associated dipole moments are contained in the two-time dipole correlation function Lg; (¢4, t5)
[45] and are not relevant for the following discussion. Instead, we focus on the quantum
transition of the fields, which is due to the annihilation of photons and SPPs by the positive-
frequency field operators El(;;())be(t) and Eg;%(R, t). Only the SPP operator depends on the
spatial coordinate R due to the normal incidence of the laser pulses [33]. On expanding the
terms in Eq. 1 we can find all time-ordered combinations of consecutive absorptions from both



fields, such as BSP, BSH JESDESY. B ES) and BSLESS), that have been indicated

in Fig. 1C. The overall probability P for a second-order emission process is then given by the
modulus square of the probability amplitude S;; summed over all final states of the fields. We
arrive at

P(R) = f f f f dt}dtydtyde, M(E, t; tr, £) ECR; £ th; b, £5), @)

where the dipole correlation functions are absorbed into the photoelectron response function
M as discussed in the Supplementary Note 1. The probability P essentially depends on the
second-order coherence function £ of the field operators with
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Here, (...); = Tr(é ...) denotes an expectation value with respect to the joint initial state
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density matrix & of the probe field and the SPP field, and Ei( ) = (Ei(”) are the negative-

frequency field (i.e., creation) operators. The second-order emission probability depends on
products of annihilation and creation operators, as in cross-terms like S, E$ E(P EX)
which represent quantum path interferences that are formed by the different absorption

processes in Fig. 1C.

The spatial fringe modulation with the SPP wavevector kgpp 0bserved in the electron yield is
obtained by considering the (approximate) plane-wave nature of the SPP in the surface plane
B oc etikseeR - The terms involving products of dissimilar operators, EGSyEL), are

independent of the SPP wavevector, those involving just one SPP field operator Eéﬁ, depend

on etkspp'R and the terms involving only products of similar operators, Egi—;;ﬁg%, depend on

etiZksepR On this basis, the measured electron emission yield profile of Fig. 2B can be
decomposed into the different contributions of Fig. 2C. They arise from different mixings of
the fields during electron emission, which in turn depend on integer multiples of the SPP
wavevector.

To clarify which of the contributions to the electron yield must be interpreted as quantum path
interferences, we expand Eq. 2 to obtain the quantum-mechanical electron emission rate in a
momentum space that is spanned by the real-space periodic modulations of the electron yield.
This momentum space must not be confused with the momentum space spanned by the emission
angles of the liberated electrons. The resulting electron emission rate in momentum space is
(see Supplementary Note 1 for a detailed derivation and discussion)
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Here, K is the wavevector in the surface plane and epp is the squared magnitude of the SPP
polarization vector. The field operators have been decomposed into annihilation and creation
operators for the probe photons, @ and at, and likewise for the SPPs, b and b, where Ny ope
and Ngpp are the associated normalization constants.

While Eq. 4 consists of 16 different fourth-order initial state correlation functions of the SPP
and the probe field, only 6 of these correlation functions are independent. The correlation
functions for positive and negative wavevectors, i.e., the correlation functions in the third and
fourth line of Eq. 4 as well as the two correlation functions in the last line of Eq. 4, are identical
up to complex conjugation. Moreover, some of the remaining correlation functions are identical
up to equal-time commutations of the involved operators. Each of these correlation functions is
interpreted as an individual electron emission pathway in Liouville space [46] and we will
identify which of these pathways correspond to quantum path interferences in the context of
Fig. 4.

First, however, we compare our experiment to Eq. 4 and demonstrate the existence of all of the
6 independent Liouville pathways in the experimental data. For this purpose, we calculate the
wavevector spectrum of the data (Fig. 2D-E) via a spatial Fourier transformation of the PEEM
image of Fig. 2A. The wavevector spectrum consists of 5 distinct peaks at multiples of the SPP
wavenumber |kgspp| = 27 /Agspp, located on a line perpendicular to the SPP phase fronts. The
first-order peaks at K = +Kkgpp correspond to the fringe modulation of the electron yield in real
space with periodicity Agspp, justifying the usual interpretation of the fringe pattern as a “direct
conceptual visualization” of the SPP pulse. The second-order peaks at K = +2Kkgpp, however,
correspond to a periodic modulation of the electron yield at half the SPP wavelength and are a
direct consequence of the nonlinear emission process. We do not observe third order peaks at
K = +3Kkgpp, Which corroborates that the electron emission process is of second order.

Each of the different Liouville pathways in Eq. 4 is characterized by a distinct wavevector K, a
distinct harmonic delay-dependence, and a distinct dependence on the product of annihilation
and creation operators. The quantum-mechanical transition rate closely resembles the structure
of the common phenomenological model [40, 47], which can be obtained from Egs. 2-4 using
the correspondence principle. In the resulting classical field approximation, each of the



annihilation and creation operators contributes to the correlation functions with the square-root
of the intensities of the respective fields, i.e., the field-strengths.

This relationship allows us to sort the contributions of the 6 independent Liouville pathways
by the powers of their field-strengths and their signatures in the electron yield in momentum
space (Fig. 2E). The second-order peaks at K = +2kgpp exclusively consist of a contribution
proportional to E2ppEZ, e The first-order peaks at K = +kgpp, however, originate from two
contributions: one is proportional to EsppE3,.,1,. and the other one is proportional to E3ppEprobe-
The situation is even more complicated for the central peak at K = 0: it consists of three
contributions, proportional t0 Edpp, Eproper aNd EdppEp.ope- NOte that the contributions
proportional to E¢pp and to Ep,.1,. are not shown in Figs. 2c and 2f as these only correspond to
spatially broad plasmoemission- [21] and photoemission backgrounds, respectively.

The different scaling behavior of the Liouville pathways with the field amplitudes provides a
means to disentangle them experimentally. We systematically change the pump and probe
powers to independently control the absorption probability from the SPP field and the probe
laser field, respectively. This procedure provides information on which of the two fields and
pathways dominate the electron emission. Figure 3 shows the measured integral amplitude of
each wavevector peak as a function of the normalized probe field strength, i.e., the normalized
square-root of the probe power. We repeated the measurement for 4 representative pump
powers to vary the field strength of the SPP. Each of the curves was normalized to its maximal
integral amplitude. The results are plotted on a double-logarithmic scale in Fig. 3 such that
power laws appear as straight lines with respective slopes. In Fig. 3A the integral amplitude of
the second-order peaks at K = +2kgpp depends for all pump powers on the normalized probe
field-strength as EZppEp,ope- Figure 3b shows the integral amplitude of the first-order peaks at
K = +kgpp. We find that for low pump powers, i.e., weak SPP excitation, the amplitude is
dominated by the contribution proportional to EgppEp .. With a slope of three. This
characteristic motivates the recently reported vector microscopy [36]. For high pump powers,
i.e., strong SPP excitation, the amplitude in Fig. 3B becomes dominated by the contribution
proportional to EdxpEprone With a slope of one. Figure 3¢ shows the results for the central
wavevector peak at K = 0. As this central peak also contains all long-range background
modulations of the TR-PEEM images, such as plasmo- and photoemission backgrounds, we
subtracted a probe-power-independent constant from each of the curves in Fig. 3C (see
Supplementary Note 2 for details). Note that this subtracted constant includes the contribution
proportional to Edpp. For low pump powers, i.e., weak SPP excitation, the amplitude of the
central peak is dominated by the contribution proportional to Ep,.;,.. As we increase the pump
power, the amplitude of the central peak becomes dominated by the contribution proportional
to ES?PPEI%robe'

In a classical particle picture, one would expect the probability for an electron to absorb a
photon or an SPP to depend on the intensities of the respective fields, which are proportional to
the squared magnitudes of the field strengths. This expectation implies it must be possible to
attribute a number of absorbed quanta from each of the involved fields to every liberated
electron. However, in this classical particle picture it is difficult to interpret the experimental
existence of contributions to the electron yield like EgppEp,o1,. that scale as odd powers of the
field-strengths. Such difficulties are not encountered in the purely quantum analysis leading to

Eq. (4).



After having demonstrated the existence of all Liouville pathways in Eq. 4 in the experimental
data, we now identify which of these pathways must be interpreted as quantum path
interferences that arise from the interference of the SPP- and photon absorption processes in
Fig. 1C. All Liouville pathways for the electron emission process in Eq. 4 (except for complex
conjugate pathways) are summarized in analogy to double-sided Feynman diagrams [30] in
Fig. 4. Each of the pathways in Fig. 4 consist of four arrows, where the colors red and blue
represent photon absorption and SPP absorption, respectively. The arrows on the left side of
each pathway correspond to creation operators, the ones on the right side correspond to
annihilation operators. Each of the depicted Liouville pathways is associated with a momentum
equal to the momentum difference between the left- and right-hand side, which gives rise to the
respective peaks in the wavevector spectrum in Fig. 2D.

The central wavevector peak at K = 0 arises from electron emission by the consecutive
absorption of two probe photons (pathway (A)), the consecutive absorption of two SPP quanta
(pathway (B)), as well as cooperative pathways (C) — (E). While pathway (C) and (D)
correspond to the consecutive absorption of each an SPP quantum and a probe photon, pathway
(E) corresponds to the interference of the consecutive absorption of an SPP quantum and a
probe photon with the respective inversely-ordered process (non-oscillatory double-mixing
[42]). It is worth noting, however, that within the approximations in Supplementary Note 1 the
pathways (C), (D) and (E) are physically equivalent, as they can be transformed into each other
via trivial commutations of creation or annihilation operators. Thus, all Liouville pathways that
contribute to the central wavevector peak only depend on the SPP and probe photon
populations.

The remaining Liouville pathways (F) — (J) cannot be explained by the simple consecutive
absorption of SPPs and probe photons but instead must be interpreted as quantum path
interferences of fundamentally different electron emission pathways. In the probe-dominated
pathways (F) and (G), the consecutive absorption of two probe photons interferes with the
consecutive absorption of an SPP and a probe photon. This situation is reversed for the SPP-
dominated pathways (H) and (I), where instead the consecutive absorption of two SPPs
interferes with the consecutive absorption of an SPP and a probe photon. Moreover, the second-
order wavevector peak at K = +2kgpp consists exclusively of the interference of the
consecutive absorption of two SPPs with the consecutive absorption of two probe photons
(pathway (J)). The single-mixing pathways of the first-order wavevector peak and the double-
mixing pathway of the second-order wavevector peak probe the mutual first and second-order
coherences of the SPPs and of the probe photons, respectively.

It is remarkable that some of the discussed Liouville pathways result in observable quantum
path interferences in the electron emission - a consequence of the nonlinear mixing of the fields
in the emission process. It is important to note that by utilizing momentum resolution we could
resolve which quantum path interferences (Fig. 4F-J) contribute to the electron emission, but
we did not resolve the individual absorption processes (as in Fig. 1C) that constitute the
guantum path interferences. Resolving the individual absorption processes would be the goal
of a which-way experiment, and doing so would indeed destroy the observed quantum path
interferences.



Discussion

Quantum path interferences are a manifestation of the inherent quantum nature of fundamental
interactions. Our approach to electron emission in the simultaneous presence of SPPs and light
confirms that Liouville pathways can be disentangled by their power-dependent contributions
in a momentum space that consists of discrete spots. Addressing more complex, non-trivial
quantum correlations between light and SPPs, like in entangled SPP-photon pairs [48],
constitutes the natural progression of our work. We believe that interferences between
transitions involving additional quantum numbers for the SPPs, such as spin- and orbital angular
momentum [42, 43, 49], can be studied most effectively in momentum space as well.
Ultimately, adding energy resolution and electron momentum resolution to our technique will
provide a route to study non-trivial quantum correlations between interacting quantum
electrons, quantum light, and quantum SPPs in the future.

References

[1] R. P. Feynman, "Space-Time Approach to Non-Relativistic Quantum Mechanics,"
Rev. Mod. Phys., vol. 20, no. 2, pp. 367-387, 1948, doi: 10.1103/RevModPhys.20.367.

[2] P. Brumer and M. Shapiro, "Control of unimolecular reactions using coherent light,"
Chem. Phys. Lett., vol. 126, no. 6, pp. 541-546, 1986, doi: 10.1016/s0009-
2614(86)80171-3.

[3] D. J. Tannor and S. A. Rice, "Control of selectivity of chemical reaction via control of
wave packet evolution," J. Chem. Phys., vol. 83, no. 10, pp. 5013-5018, 1985, doi:
10.1063/1.449767.

[4] B. Sheehy, B. Walker, and L. F. DiMauro, "Phase control in the two-color
photodissociation of HD+," Phys. Rev. Lett., vol. 74, no. 24, pp. 4799-4802, 1995, doi:
10.1103/PhysRevL ett.74.4799.

[5] D. Meshulach and Y. Silberberg, "Coherent quantum control of multiphoton
transitions by shaped ultrashort optical pulses,” Phys. Rev. A, vol. 60, no. 2, pp. 1287-
1292, 1999, doi: 10.1103/PhysRevA.60.1287.

[6] D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions
by a femtosecond laser pulse,” Nature, vol. 396, no. 6708, pp. 239-242, 1998, doi:
10.1038/24329.

[7] T. Kanai, S. Minemoto, and H. Sakai, "Quantum interference during high-order
harmonic generation from aligned molecules,” Nature, vol. 435, no. 7041, pp. 470-4,
2005, doi: 10.1038/nature03577.

[8]  W. Boutu et al., "Coherent control of attosecond emission from aligned molecules,”
Nat. Phys., vol. 4, no. 7, pp. 545-549, 2008, doi: 10.1038/nphys964.

[9] A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schafer, and C. Ropers,
"Quantum coherent optical phase modulation in an ultrafast transmission electron
microscope,” Nature, vol. 521, no. 7551, pp. 200-3, 2015, doi: 10.1038/nature14463.

[10] G. M. Vanacore et al., "Attosecond coherent control of free-electron wave functions
using semi-infinite light fields,” Nat. Commun., vol. 9, no. 1, p. 2694, 2018, doi:
10.1038/s41467-018-05021-x.

[11] J. G. Horstmann, H. Bockmann, B. Wit, F. Kurtz, G. Storeck, and C. Ropers,
"Coherent control of a surface structural phase transition," Nature, vol. 583, no. 7815,
pp. 232-236, 2020, doi: 10.1038/s41586-020-2440-4.

[12] . Madan et al., "Holographic imaging of electromagnetic fields via electron-light
quantum interference,” Sci. Adv., vol. 5, no. 5, p. eaav8358, 2019, doi:
10.1126/sciadv.aav8358.

[13] C. Rewitz et al., "Coherent Control of Plasmon Propagation in a Nanocircuit,” Phys.
Rev. Appl., vol. 1, no. 1, p. 014007 2014, doi: 10.1103/PhysRevApplied.1.014007.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriyev, "Above-
threshold ionisation with a two-colour laser field,” J. Phys. B, vol. 23, no. 16, pp.
2761-2769, 1990, doi: 10.1088/0953-4075/23/16/018.

M. Forster et al., "Two-Color Coherent Control of Femtosecond Above-Threshold
Photoemission from a Tungsten Nanotip,” Phys. Rev. Lett., vol. 117, no. 21, p.
217601, 2016, doi: 10.1103/PhysRevLett.117.217601.

W. Cheng-Wei Huang, M. Becker, J. Beck, and H. Batelaan, "Two-color multiphoton
emission from nanotips,” New J. Phys., vol. 19, no. 2, p. 023011, 2017, doi:
10.1088/1367-2630/aa58hb.

Z. Zhao, P. Lang, Y. Qin, B. Ji, X. Song, and J. Lin, "Distinct spatiotemporal imaging
of femtosecond surface plasmon polaritons assisted with the opening of the two-color
quantum pathway effect,” Opt. Express, vol. 28, no. 13, pp. 19023-19033, 2020, doi:
10.1364/0OE.397526.

P. Lang et al., "Ultrafast switching of photoemission electron through quantum
pathways interference in metallic nanostructure,” Opt. Lett., vol. 43, no. 23, pp. 5721-
5724, 2018, doi: 10.1364/01.43.005721.

A. Li, Y. Pan, P. Dienstbier, and P. Hommelhoff, "Quantum Interference Visibility
Spectroscopy in Two-Color Photoemission from Tungsten Needle Tips," Phys. Rev.
Lett., vol. 126, no. 13, p. 137403, 2021, doi: 10.1103/PhysRevLett.126.137403.

W. K. Wootters and W. H. Zurek, "Complementarity in the double-slit experiment:
Quantum nonseparability and a quantitative statement of Bohr's principle,” Phys. Rev.
D, vol. 19, no. 2, pp. 473-484, 1979, doi: 10.1103/PhysRevD.19.473.

D. Podbiel et al., "Imaging the Nonlinear Plasmoemission Dynamics of Electrons
from Strong Plasmonic Fields,” Nano Lett, vol. 17, no. 11, pp. 6569-6574, 2017, doi:
10.1021/acs.nanolett.7b02235.

D. Podbiel et al., "Spatiotemporal Analysis of an Efficient Fresnel Grating Coupler for
Focusing Surface Plasmon Polaritons,” ACS Photonics, vol. 6, no. 3, pp. 600-604,
2019, doi: 10.1021/acsphotonics.8b01565.

P. Dombi et al., "Strong-field nano-optics," Rev. Mod. Phys., vol. 92, no. 2, p. 025003
2020, doi: 10.1103/RevModPhys.92.025003.

P. Dombi et al., "Ultrafast strong-field photoemission from plasmonic nanoparticles,"
Nano Lett., vol. 13, no. 2, pp. 674-8, 2013, doi: 10.1021/n1304365e.

B. Frank et al., "Short-range surface plasmonics: Localized electron emission
dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” (in
English), Sci Adv, vol. 3, no. 7, p. e1700721, 2017, doi: 10.1126/sciadv.1700721.

J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, "Surface
plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved
photoemission,” Phys. Rev. Lett., vol. 85, no. 14, pp. 2921-4, 2000, doi:
10.1103/PhysRevLett.85.2921.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, "Photoemission from
multiply excited surface plasmons in Ag nanoparticles," Appl. Phys. A, vol. 71, no. 5,
pp. 547-552, 2000, doi: 10.1007/s003390000712.

M. Aeschlimann et al., "Coherent two-dimensional nanoscopy,"” Science, vol. 333, no.
6050, pp. 1723-6, 2011, doi: 10.1126/science.1209206.

N. B. Grosse, J. Heckmann, and U. Woggon, "Nonlinear plasmon-photon interaction
resolved by k-space spectroscopy,” Phys. Rev. Lett., vol. 108, no. 13, p. 136802, 2012,
doi: 10.1103/PhysRevLett.108.136802.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy. Oxford University Press,
1999.

T. Schmidt et al., "SPELEEM: Combining LEEM and Spectroscopic Imaging,” Surf.
Rev. Lett., vol. 05, no. 06, pp. 1287-1296, 1998, doi: 10.1142/s0218625x98001626.



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

D. Janoschka et al., "Implementation and operation of a fiber-coupled CMOS detector
in a low energy electron Microscope,” Ultramicroscopy, vol. 221, p. 113180, 2020,
doi: 10.1016/j.ultramic.2020.113180.

P. Kahl et al., "Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for
Imaging Surface Plasmon Polaritons,” Plasmonics, vol. 9, no. 6, pp. 1401-1407, 2014,
doi: 10.1007/s11468-014-9756-6.

M. U. Wehner, M. H. UIm, and M. Wegener, "Scanning interferometer stabilized by
use of Pancharatnam’s phase," Opt. Lett., vol. 22, no. 19, pp. 1455-1457, 1997, doi:
10.1364/01.22.001455.

F. J. Meyer zu Heringdorf, D. Podbiel, N. Ral3, A. Makris, N. M. Buckanie, and P. A.
Kahl, "Spatio-temporal imaging of surface plasmon polaritons in two photon
photoemission microscopy,"” Proc. SPIE, vol. 9921, p. 992110, 2016, doi:
10.1117/12.2239878.

T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F. J. Meyer Zu Heringdorf, and H.
Giessen, "Ultrafast vector imaging of plasmonic skyrmion dynamics with deep
subwavelength resolution,"” Science, vol. 368, no. 6489, p. eaba6415, 2020, doi:
10.1126/science.aba6415.

B. Radha, M. Arif, R. Datta, T. K. Kundu, and G. U. Kulkarni, "Movable Au
microplates as fluorescence enhancing substrates for live cells," Nano Res., vol. 3, no.
10, pp. 738-747, 2010, doi: 10.1007/s12274-010-0040-6.

J. Heckmann, M. E. Kleemann, N. B. Grosse, and U. Woggon, "The dual annihilation
of a surface plasmon and a photon by virtue of a three-wave mixing interaction,” Opt.
Express, vol. 21, no. 23, pp. 28856-61, 2013, doi: 10.1364/0OE.21.028856.

J. Renger, R. Quidant, N. van Hulst, and L. Novotny, "Surface-enhanced nonlinear
four-wave mixing," Phys. Rev. Lett., vol. 104, no. 4, p. 046803, 2010, doi:
10.1103/PhysRevLett.104.046803.

A. Kubo, N. Pontius, and H. Petek, "Femtosecond microscopy of surface plasmon
polariton wave packet evolution at the silver/vacuum interface,” Nano Lett., vol. 7, no.
2, pp. 470-5, 2007, doi: 10.1021/nl0627846.

L. I. Chelaru and F.-J. Meyer zu Heringdorf, "In situ monitoring of surface plasmons
in single-crystalline Ag-nanowires," Surf. Sci., vol. 601, no. 18, pp. 4541-4545, 2007,
doi: 10.1016/j.susc.2007.04.146.

G. Spektor et al., "Mixing the Light Spin with Plasmon Orbit by Nonlinear Light-
Matter Interaction in Gold," Phys. Rev. X, vol. 9, no. 2, p. 021031 2019, doi:
10.1103/PhysRevX.9.021031.

G. Spektor et al., "Revealing the subfemtosecond dynamics of orbital angular
momentum in nanoplasmonic vortices," Science, vol. 355, no. 6330, pp. 1187-1191,
2017, doi: 10.1126/science.aaj1699.

P. Kahl et al., "Direct Observation of Surface Plasmon Polariton Propagation and
Interference by Time-Resolved Imaging in Normal-Incidence Two Photon
Photoemission Microscopy," Plasmonics, vol. 13, no. 1, pp. 239-246, 2017, doi:
10.1007/s11468-017-0504-6.

B. Mollow, "Two-Photon Absorption and Field Correlation Functions," Phys. Rev.,
vol. 175, no. 5, pp. 1555-1563, 1968, doi: 10.1103/PhysRev.175.1555.

S. Ramakrishna and T. Seideman, "Coherence spectroscopy in dissipative media: a
Liouville space pathway approach,” J. Chem. Phys., vol. 122, no. 8, p. 84502, 2005,
doi: 10.1063/1.1850891.

D. Podbiel, P. Kahl, and F.-J. Meyer zu Heringdorf, "Analysis of the contrast in
normal-incidence surface plasmon photoemission microscopy in a pump—probe
experiment with adjustable polarization,” Appl. Phys. B, vol. 122, no. 4, p. 90 2016,
doi: 10.1007/s00340-016-6363-6.



[48] G. Di Martino et al., "Quantum statistics of surface plasmon polaritons in metallic
stripe waveguides,” Nano Lett., vol. 12, no. 5, pp. 2504-8, 2012, doi:
10.1021/n1300671w.

[49] Y. Daiand H. Petek, "Plasmonic Spin-Hall Effect in Surface Plasmon Polariton
Focusing," ACS Photonics, vol. 6, no. 8, pp. 2005-2013, 2019, doi:
10.1021/acsphotonics.9b00422.

Acknowledgments: We thank Frank Jahnke and Christopher Gies for discussion about the
theory. We further thank Bettina Frank for providing us with high-quality sample substrates.

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through Collaborative Research Center SFB1242 “Non-equilibrium
dynamics of condensed matter in the time domain” (Project-1D 278162697), as well as
SPP1839 and GRK2642. The Stuttgart group is supported by ERC AdG ComplexPlas and
PoC 3DPrintedoptics.

Author contributions: P.D., D.J., and F.-J.M.z.H. did the time-resolved PEEM experiments.
P.D. performed the data analysis and developed the theory. All authors contributed to the data
interpretation and discussions. The manuscript was written through contributions of all
authors.

Competing interests: All authors declare they have no competing interests.

Data and materials availability: All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials. Additional data related to this paper
may be requested from the authors.



Figures and Tables

A B C

Light Cone /’ _?.

ﬁ- |f)

2o

Normal-Incidence
)
Photon

Energy (eV)

Energy
Photon
B
%

pr b b bera b by i

0 IIII;IIIII|IIH|[IH Ll
0 10 20 30 40 K=0 K = kspp K = 2kspp
In-Plane Field Momentum (1/um) In-Plane Field Momentum

Fig. 1. Mixing of SPPs and light in electron emission.

(A) Sketch of the utilized pump-probe scheme. The scanning electron micrograph shows a
platelet similar to the one used for the presented experiments. The arrows illustrate the different
light and SPP pulses. (B) Dispersion relation for SPPs and light as a function of the momentum
in the surface plane. It is the momentum-mismatch between normally-incident light and the
SPPs that we exploit to distinguish individual quantum path interferences. (C) Energy-level
diagram of the different second-order electron emission pathways that can occur in the
interaction region of SPPs and light. The different states and paths are sorted by the in-plane
momentum transfer during the emission process.
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Fig. 2. Fourier decomposition of SPP-light correlations in PEEM.

(A) Time-resolved PEEM image of an SPP pulse 80 fs after excitation at the grating coupler,
depicted in a linear false-color scale. The fringes in the center of the image are a direct
conceptual visualization of the propagating SPP pulse. (B) Section through the fringe-pattern
in the electron yield distribution in real-space as indicated by the arrows in (A). (C) Sketch of
the contribution of the different terms in Eq. 4 to the spatial fringe-pattern in the electron yield
(B) sorted by powers in the SPP- and the probe field. (D) Wavevector spectrum computed via
a windowed Fourier transform of an electron-optically magnified image of the interaction
region in (A) depicted on a logarithmic false-color scale. The five visible peaks arise from the
fringe modulation in real-space, and their equidistant spacing is given by the SPP wavenumber.
(E) Section through the SPP wavevector spectrum as indicated by the arrows in (D). (F) Sketch
of the contribution of the different terms in Eq. 4 to the wavevector spectrum in (E) sorted by
powers in the SPP- and the probe field.
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Fig. 3. Separation of wavevector peak contributions.

(A) Integral amplitude of the second-order wavevector peak at K = +2kgpp, (B) the first-order
wavevector peak at K = +Kgpp, (C) the central wavevector peak at K = 0 as a function of the
normalized probe field strength for four different pump powers, plotted on a double logarithmic
scale. The measurements match the power laws expected from Eq. 2 well, as depicted by the
straight black lines.
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Fig. 4. Microscopic picture of the quantum pathways during electron emission.

An electron is liberated from an initial state |i) below the Fermi energy Er to a final state |f) in
the vacuum by the second-order absorption of photons (red arrows) and SPPs (blue arrows). In
each of the diagrams, the pathway given by the two arrows on the left-hand side interferes with
the pathway given by the arrows on the right-hand side of the respective diagram. The diagrams
are grouped by their dependence on the strength of the SPP and the probe field and by their

wavevector contribution.
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Supplementary Note 1: Calculation of the electron yield

The image-contrast mechanism for the observation of surface plasmon polaritons (SPPs) in inter-
ferometric time-resolved two-photon photoemission electron microscopy is typically described in a
phenomenological semi-classical model [1]. This is, however, not sufficient to interpret the results
from the main text in a particle picture, as the semi-classical model only considers the electric fields
and thus fundamentally lacks the concept of absorption of individual photons or SPPs.

In the following we will first briefly review the semi-classical field-based description and generalize
it to our Fourier-space approach to photoemission electron microscopy from the main text. We will
then based on the theory of two-photon absorption derive a quantum-mechanical generalization of
the established semi-classical model. The derived model will as well be discussed in Fourier-space
and its connection to the experimentally varied parameters will be highlighted.

1.1 Electric fields

To model the observed electron yield, either by a semiclassical approach or by a quantum-mechanical
approach, we first need to know the functional form of all relevant fields at the surface. The
investigated sample is modeled as a single vacuum-gold interface located at z = 0. The dielectric
function of the problem is given by £(z > 0) = 1 in vacuum and by e(z < 0) = &, in the gold
platelet.

As discussed in the main text we approximate the electric field of the probe laser pulse Epope(r, t),
which is normally-incident from vacuum onto the surface, as a monochromatic wave. Naively, one
could write for the electric field of the probe laser

EProbe(ra t) = EProbeEProbee_ikze_th- (Sl)

Here, Eppope is the amplitude, w is the frequency, and k = w/cp is the wavenumber of the probe
field with ¢y being the speed of light in vacuum. The polarization vector of the probe laser pulse
€probe lies in the (z,y)-plane and is assumed to be normalized, i.e. |€prope| = 1.

It is clear that Eq. (S1) only holds in free space. More generally, the probe field is partially reflected
and partially transmitted at the surface. The transmitted part of the probe field furthermore is
damped and screened in the gold platelet. Electrons are, however, exclusively liberated by absorption
of quanta from the local electric field within the gold platelet. While the reflected part of the probe
field can also interact with liberated electrons [2], such effects are not of relevance here. Usually,
the Fresnel equations are employed in photoemission to model the effect of the surface onto the
electric field that liberates the electrons [3]-[5] and it has been shown that this treatment is valid
down to atomic length scales [6]. To model the partial transmission and subsequent damping of the
probe field in the gold platelet we introduce a mode function

e~ thz 4 Retkzr 2 >0

2 1.7 9 S2
Tez/6ee—zk z 2 < 0 ( )

UProbe (I‘) = {



where R and 7 are the complex reflection and transmission amplitudes of the probe field given by
the Fresnel equations, k¥’ is the wavenumber and §, is the penetration depth of the probe field in
the gold platelet. Since the probe field is normally incident onto the surface and birefringence is
negligible for gold, the probe polarization does not change upon transmission at the surface, which
can easily be shown using the Fresnel equations. This allows us to write the probe field as

Eprobe(Ts 1) = Eprobe€ProbelProbe(r)e .. (S3)

Just like the probe field, we approximate the SPP pulse by a single plane SPP wave. The electric
field of a plane SPP wave for an isotropic and non-magnetic interface, like for our vacuum-gold
interface, can be written as

Espp(r,t) = Esppespp(2)uspp(r)e ™", (S4)

where r is the position, t is the time, Egpp is the amplitude, espp is the polarization vector, and
ugpp(r) is the mode function. In our experiment, the frequency of the SPP w is identical to the
frequency of the probe, since the SPP is resonantly excited by the same laser delivering the probe
pulses. The mode function of the SPP field has the simple form

uspp (r) = e'ksPp TP ()l (S5)

which corresponds to a plane wave in the (z,y)-plane of the interface, that exponentially decays
along the z-direction. Here, kgpp is the in-plane wavevector of the SPP and ~spp(2) is the decay
constant (in z-direction) of the SPP field. The SPP wavenumber is given by

Em
|kspp| = kspp = k TTe (S6)

and the decay constant of the z-component of the SPP’s electric field yspp(z) is related to the SPP
wavenumber by vspp(2)? = k2pp — £(2)k?. The polarization vector of the SPP is given by

kspp . kspp
)Z = egPP + egpp(2), (S7)

spp(2) ksep | Yspp (2
where z is the unit vector along the z-direction and thus perpendicular to the interface, and egpp and
eSLPP(z) are the in-plane and out-of-plane component of the SPP polarization vector, respectively.
The negative sign of the z-component holds for z > 0, while the positive sign holds for z < 0. Note,
that the z-component of the SPP polarization vector is discontinuous across the interface. The
polarization vector is thus not normalized and the absolute value of the SPP field is not given
by the amplitude of the field. Rather, the in-plane component of the polarization vector, which
in contrast is continuous, is normalized and the amplitude of the field gives the amplitude of the
in-plane component of the SPP field vector.

1.2 Semiclassical Approach

In a semiclassical simplification, we can calculate the second-order electron yield Yoppg(R, At) at
position R in the surface plane and at pump-probe delay At as [1]

oo 4 oo 4
Yoppr(R, AL) o / dt‘E(R,t)‘ o / dt‘ESpp(R,t)—l—EprObe(R?t—At) . (S8)
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where E(R, t) is the overall electric field at the surface, and Egpp (R, ¢) and Ep,ope(R, t — At) are the
electric field of the SPP pulse and the probe laser pulse, respectively. Strictly speaking, we would need
to include the full z-dependence of all fields and of the electron emission probability and integrate
out the z-coordinate. Since both fields and the electron emission probability decay exponentially in
the metal, electrons dominantly originate from a small layer within the surface. For our analysis
in the main text, however, we are only interested in modulations of the electron yield within the
surface plane and thus only consider a contribution at z = 07, i.e. only consider electron emission
from within the metal infinitesimally below the surface. By doing so we neglect a constant prefactor
depending on the decay constants of the fields and the emission probability, which is not of importance
for our following discussion. The resulting probe field is Ep,ope(R, 1) = Eprobe€probee ! and the
resulting SPP field is Espp(R,t) =~ Esppesppe’®spPRe—iwt where we absorbed the transmission
coefficient for the probe field into the probe field amplitude 7 Eprobe — Eprobe and where we set

€spp = €gpp(z =07).

1.2.1 Transition Rate

In our plane-wave approximation the explicit time-dependence of the integrand in Eq. (S8) vanishes.
It is thus more instructive to work with the transition rate
- dY- R, At
ik, A = C2rrElt 20

d [t 4
x lim I / dt’ ’ESPP(R, t,) + Eprobe(R, t— At)| .
—o0

t—o0

(S9)

Expanding the binomial in Eq. (S9) and inserting the definitions of the fields Eq. (S3) and Eq. (S4)
leaves us with

Fgllé’i;’qﬁ:al(Rv At) 8 Eérobe|€1:’robe|4 + EéLPP|€SPP|4
2 2 2 2 |€brobe ° espp |’
+ 2ESpp Eprobe|€5PP | |€Probe|” | 1 + —F 25—

|€SPP ‘2 | €Probe | 2

+ 4E‘SPPE‘Probe <E§PP|€SPP|2 + Elg’robe|€Probe|2> (SlO)

i(k ‘R—wAt
X Re{ei’érobe . egppe’ksprR—w )}

2o B2 * 2 _i(2kspp-R—2wAt
+ 2E3pp Eprobe Re{(eProbe'ESPP) ¢!(Pspp R—2w )}.



In the main text we analyze the electron yield in reciprocal space. A Fourier transform of Eq. (S10)
in the two-dimensional position coordinate R leaves us with the transition rate in reciprocal space

PSB! (K, A8) o (2m)?0(K) (Ebyopelepronel’ + Edpplespr|*)

* 2
' € " €SPP
+2(21) 25 (K)E2pp E2. 1.0 l€spp ) |€probel” | 1+ %
|€SPP| |€Probe|
2 2 2 2 9

+ 2(27T) Espp Eprobe (ESPP|€SPP’ + Eprobe|€Pr0be‘ > (Sll)
x (ef’robe : ESPPa(I< - kSPP)B_iwAt + €Probe * €§pp5(K + kspp)eiwAt)
+(2W)QE§PPE%I'0be <(€1>;robe ’ GSPP)25(K - 2kSPP)€_2iWAt

+(€probe - €5pp) 20 (K + 2kSPP)€2iWAt>,

where § denotes the Dirac delta function. Eq. (S11) holds for any probe polarization and any
orientation of the in-plane SPP polarization. In the presented experiments, however, we chose
the probe polarization to be collinear with the in-plane SPP polarization. Recalling that we have

|€probe| = 1 and |egpp| =1, we conclude €}, ;. - €spp = 1 and write for Eq. (S11)

YR, A) x (258(0) ( By + Bl (1+ leborl”)’)
+ 2(27)20(K) Epp Py (2 + ledopl )
+2(27)* Espp Eprobe (Egpp <1 + |egpp] 2) + Elg’robe)
x (80K — kgpp)e A 4+ 5(K + kspp)e™")
+ (27)2 E2pp ERope ((K — 2kgpp)e 292! + §(K + 2kspp)e™21) .

(S12)

We can formulate the transition rate in Eq. (S12) also in terms of the intensities of the fields. i.e.
use the identities

1 1
IProbe = QCProbe50|EProbe‘2 = §CPr0be€0E%robe (8133)
1 1 2
ISPP = §CSPP50|ESPP‘2 = §CSPP€QE§PP (1 + ‘eé_PPl ) . (Sl3b)



After carrying out this substitution we arrive at

. 4 2 1’2 IQ
T, A o (27 ot (e 4 e )
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+21 — | K -
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which is our final result for the semiclassical second-order transition rate in reciprocal space.

1.3 Quantum-Mechanical Approach

We base our quantum-mechanical calculation of the second-order electron yield on the theory of
two-photon absorption developed by Mollow [7]. In this approach, the probability Pr;(R) for an
electron to make a second-order transition from an initial state |i) to a final state |f) is given by

1 00 00 00 00 s x s
Ppi(R) = = / at, / dt) / dty / b (L37(00,15)) L1311, 12) s (R, thi 1, 1),
—0o0 —00 —00 —0o0

(S15)
with the second-order dipole correlation function of the electron system at the vacuum-gold interface
E?‘Zﬁ (t1,t2) and the second-order field correlation function Egas(R;t],t5;t1,t2). Note, that we
employed the Einstein summation convention and will do so for the rest of the text and that
a,f,7,0 € {x,y,z}. We only consider absorption and neglect emission of electromagnetic field
quanta. In this case the field correlation function is given by

A (— A (— ~ A+
Esans(Rith ity ta) = (B (Rt LD (R ES (R 1) B (R, 1)) (S16)
where E((yi) is the positive/negative (+) frequency component of the a-th vectorial component of
the operator for the quantized electromagnetic field and (...), = Tr(d...) is the expectation value
with respect to the initial state density matrix & of the electric field. The dipole correlation function
is given by
ﬁ?f(thh) = 0O(t; — t2) Z(ufm)a(umi)’gewftle_witze_w’“(tl_tQ), (S17)
m
where p;; = (j|fili) is the transition dipole matrix-element for the transition i — j, and wy, wy,
and w; are the frequencies of the final, intermediate and initial electronic states, respectively. The
sum in Eq. (S17) goes over all possible intermediate states. Causality of the step-wise excitation
from the initial to the intermediate state and from the intermediate to the final state is ensured by
the Heaviside step function ©(t; — t2).



1.3.1 Initial and final state average

In a photoemission experiment one does not have direct experimental access to the initial state of the
liberated electron. In principle one only can measure the quantum numbers of the final state of the
liberated electron, namely its momentum, its kinetic energy and its spin. For a monochromatic light
source and simple materials there is a one-to-one correspondence between the initial state energy
and the final state kinetic energy of the electron. However, if the light source is not monochromatic,
as it is the case for ultrashort laser pulses, and the accessible initial states form a continuum, as
it is the case for metals like gold, a magnitude of initial states contributes to a single final state
energy [8]. In this case, one has to integrate the emission probability over all initial states.

In photoemission microscopy of SPPs one often does not even do final state resolved imaging,
but rather integrates over the final state kinetic energy, momentum and spin. As a result, one only
measures the spatially-resolved integral photoemission yield. It is thus natural to average Eq. (S15)
over all inital and final states to acquire the integral electron emission probability

1 [ee] o0 oo o0 5
PR) = o / dt} / dtf / dty / dtg MOPT(H) e t1,t9)Egans (R th, thity, t2),  (S18)
—00 —0o0 —00 —0o0
to describe our experiment. We introduced the integral electronic dipole response function

MOty t2) = D ps (£57 (11, 15)) £, 2), (S19)
i f

where p; = (i|p|i) are the diagonal matrix elements of the initial state density matrix of the electron
system.

1.4 Connection between the quantum-mechanical and the semi-classical model

We know that Eq. (S8) is well-working approximation to the second-order electron yield that
is routinely used to describe time-resolved PEEM experiments. Equation (S18) has two major
qualitative deviations from the simple form of Eq. (S8). First, the dipole correlation function and
the field correlation function both appear at four different times in a convolutional manner. Second,
each vectorial component of the electric field in the field correlation function is weighted by different
components of the dipole correlation function and furthermore, all possible combinations of field
components are included.

In the following we will introduce a small set of approximations, which enable us to resolve these
apparent complications and derive a direct quantum-mechanical generalization of Eq. (S9). We will
first partially eliminate the convolution integrals in Eq. (S18) by considering the (virtual) state
lifetime of the intermediate state in the electron emission process. Then, we will eliminate the
directional dependence introduced by the polarization mixing due to the tensorial nature of the
electronic dipole response function in Eq. (S18). Finally, we will eliminate the remaining temporal
convolution by considering the bandwidth of available second-order electron transitions. Note, that
the order in which we introduce the approximations is physically not important but simplifies the
following derivations.



1.4.1 Short-lived intermediate states

The temporal convolutions in Eq. (S18) would imply that if the dipole correlation function includes
long-lived coherences between different times, any temporal cross-correlation between different fields
would appear significantly broadened in the time-resolved second-order electron yield. In an extreme
case this would imply the liberation of electrons even if the pulses in the field correlation function
are well separated in time. This, however, contradicts the experience that the temporal shape of the
time-resolved second-order electron yield is typically dominated by the cross-correlation of the probe
pulse and the SPP pulse at the surface and usually no severe broadening of the signal is observed.

Partially, the convolutions in Eq. (S18) appear, because the intermediate state of the electron
during the second-order emission process is assumed the be a real and infinitely long-lived state.
In a real metal, however, electrons have an intrinsic lifetime as they interact with each other via
Coulomb scattering and with their crystalline environment via electron-phonon-interaction. If
these interactions are weak enough, excitations in the interacting electron system can be well
approximated by single-particle excitations of weakly interacting quasi-electrons with a renormalized
mass, a renormalized energy and a finite lifetime. This concept is one of the key-ideas behind Fermi
liquid theory and especially the finite lifetime of the quasi-electrons is important to describe the
temporal evolution of the electron yield in our experiment. To include such effects, we first formally
identify the free retarded single-particle Green’s function, i.e. the Schrédinger propagator, of the
intermediate state within the dipole correlation function Eq. (S17)

G'rl;}‘bm’(tl - t2) = _i@(tl - t2)€_iwma1_t2)5mm’> (820)

such that the dipole correlation function becomes
LGt t2) =0 (1) (Bng) P G (1 — o)™ 7042, (S21)
m

As a simplistic approximation, we can now generalize the original theory of two-photon absorption
by Mollow [7] to realistic electron systems by replacing the free Green’s function with a Green’s
function describing the quasi-electrons in the metal. A simple ansatz for the quasi-electron Green’s
function, which includes all essential concepts of weakly interacting quasi-electrons, is given by
GR

mm/ (

t1 — tQ) = —i@(tl — tQ)Zme_iwm(tl_t2)e_(t1_t2)/7m5mm/, (822)

where Z,, it the spectral weight and 7, is the lifetime of the quasi-electron in the intermediate state
|m). The quasi-electron Green’s function can be interpreted as the probability amplitude of finding
a quasi-electron in the single-particle intermediate state |m') at time ¢; after it was put in the state
|m) at time t5. Apparently, this probability amplitude is diagonal in the quantum numbers m, m’
and decays exponentially with the lifetime 7, as the time-constant.

We now assume that the intermediate state lifetime is sufficiently short compared to the overall
dynamics of the field correlation function. This is a good approximation for dominantly virtual
intermediate states and especially for the rapid dephasing and decay of optically excited electrons
in noble metals like gold [9], [10]. Even if the intermediate state lifetime would be comparable to
the dynamics of the field correlation function, broadening effects would typically be weak and could



only be found in the temporal wings of second-order electron yield. Under this assumption the
exponential decay in the Green’s function in Eq. (S22) can be approximated by a d-function and we
have

Ganm/ (tl — tg) ~ —ié(tl — tg)TmZm(smmr. (823)

Note that the decay constant appears as a multiplicative factor because of the scaling property of
the d-function. In this approximation the dipole correlation function becomes

LY (t1,t9) & 8t — t2) L] (1)

= 0(ty — e’ Z(me)a(ﬂmi)BZme (524)
and we can write for the dipole response function
MOBY(H ety to) m 8(ty — t2)d(t) — th) Mo (1, — ), (S25)
with the integral dipole response function
(0
MEBV (4 ) Zpl ( % (th) ) £h(t)
(S26)

= Z pie' oy —ws)(ti=t) Z ZanTnTm(N}n)a(“;‘zi)ﬂ(ﬂfm)’y(/imi)é'

i?f n,m

This function only depends on the time difference 7 = t; — #]. If we insert Eq. (526) into Eq. (S18),
integrate out the §-functions and do a change of variables, we arrive at the expression

1 oo oo
P(R) = o / at / dr MOPO ()05 (Rid 5L+ 7,1+ 7) (s27)

for the electron emission probability. In this form, the field correlation function is only evaluated
at two different times, which are connected in a convolutional manner by the material response
function.

1.4.2 Negligible intermediate state interference

For broadband femtosecond laser pulses multiple intermediate states can fulfill energy conservation
for a single pair of initial and final states. This corresponds to the sum over all combinations of
intermediate states in Eq. (S26). In time-resolved photoemission one often assumes that different
intermediate states, that connect the same initial and final state, do not interfere. Then, one can
replace the coherent sum over all combinations of intermediate states by an incoherent sum, such
that

M (7 Zpe “s WZZ? 72 (1) (1) (1 ) (i) (S28)



1.4.3 Isotropic distribution of dipole moment orientations

Usually, the noble metals are considered to be simple metals, i.e. their electronic properties are
assumed to be well approximated in a free electron gas model and to have no directional dependence
with respect to the crystal lattice. Experimentally there is no strong evidence that on cesiated
Au(111) surfaces like the one in our experiment mixing of different field components during the
photoemission process or polarization-direction dependencies of the photoemission process dominate
the electron yield [11]. Just recently the polarization-isotropy of the emission process even enabled
a retrieval of the local electric field polarization at the surface only from the electron yield [12]. We
thus consider the transition dipole moments in the metal to be isotropically distributed.

For that reason, we introduce the unit vectors ws, = s,/ |u, fm| and Uy = ;i /| i and we
write for the material response function

7 —w; )T 2 * *
M7y =" i " 2 | P (@) (W) (W )Y (i) (529)
if m

Note, that the transition dipole moments generally are complex three-dimensional vectors and
thus the introduced unit vectors are also complex three-dimensional vectors. Strictly speaking
it does not make much sense to speak of an orientation of the complex unit vectors because of
their complex-valued components. Still, we can formulate a notation of an isotropic distribution
of transition dipole moments. For this we consider the unit vectors to be random variables which
are statistically independent of the modulus squares of the transition dipole moments and all other
quantities in Eq. (529). We then approximate the material response function by its directional
average

M (7) % B [ MO (r)]

(s —tos )T 2 : « N S30
= oI 2 2 | b L) (W) TR (205)7 (i), (830)
i?f m

where E[...] denotes the statistical expectation value.

To model the isotropicity of the dipole response of the metal we consider the unit vectors of
the transition dipole moments to be isotropically distributed over the three-dimensional complex
unit-sphere. For real vectors such a distribution would be achieved by sampling the components
u; of a vector u = (uy,u,,u;)T from a standard normal distribution A(0,1) and subsequently
normalizing the vectors. That is, if we have u; ~ N'(0,1) and u; and u; independent and identically
distributed (u; Ll w;), then u/|ul is istoropically distributed over the three-dimensional unit sphere
[13]. For complex vectors, this is generalized by sampling the vector components from a complex
normal distribution, i.e. u; ~ CN(0,1) and thus Re{u;} ~ N(0,1/2), Im{u;} ~ N(0,1/2) and
Re{uz} ain Im{ul}

The probability density function f(u) for the three-dimensional complex case is given by

F) = = (=S oy ul?) = = exp(~Iul?). (531)
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It is obvious, that this probability density function is invariant under unitary transformations, which
directly reflects the isotropicity of the distribution. In the following we will derive expressions for
the expectation values E[(u},,)*(usn)?] and E[(u?,;)? (umi)?] based on this probability distribution

function. Per construction we have |u/[ul|* = 1 and it follows that

|“Z'|2] SE ['“”2] = % (S32)

[ul” Ju”

1=k [Ez’:u,y,z) ('ﬁfﬂﬂ =3k

from which we conclude that E[(u},,)*(usn)%] = 1/3 and E[(w?,)° (wmi)?] = 1/3. We are left with

calculating the off-diagonal expectation values, i.e. expectation values of the form E[u;u]/ lu)?].
From the unitary symmetry of the probability density function Eq. (S31) it follows that these
expectation values need to be invariant under the change u; — u;e’ | i.e.

E[uiu}/|uf’] = E[u;e’®u}/[ul*] = eElusu/|ul?]. (S33)

As this equality needs to hold for any ¢ € R, we conclude that the off-diagonal expectation
values need to vanish and we finally have E[(u},,)%(usm)7] = 6%7/3 and E[(u?,,)? (wm:)°] = 67°/3.
Combining this result and Eq. (S30) we finally arrive at

1 1 .
MEB(r) = S5 M(r) = 565165 3 e S 22 22 L Pl (534)
i,f m

where we introduced the directionally independent material response function

M(7) =Y pie TN " 2 | b (S35)
i,f m
In this approximate the integral electron emission probability in Eq. (S27) becomes

PR) ~ 9% / dt / AT M(7)8%76% o5 (Rt tt + 7.t +7)
L (536)
= @/ dt/ dTM(T)ggaaﬁ Ryt t;t+71,t+7).

1.4.4 Instantaneous material response

The laser pulses used in the experiment typically have a bandwidth of ~ 80nm centered around
800 nm, or in terms of energies a bandwidth of ~ 155 meV centered around 1.55eV. This bandwidth
is considerably small compared to the bandwidth of available two-photon transitions for the cesiated
Au(111) surface. Any coherences between different second-order transitions within this bandwidth
into the continuum of free electron final states are expected to average out in the integral electron
emission probability [8]. To include this, we first notice that the material response function in
Eq (S35) is nothing else than a Fourier sum, which might be rewritten as

1 )
M(r) = > MyienT (S37)
ihf
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with the matrix elements My; = 2mp; > Z m|p, fm| \p,.:|* and the transition frequency w fi =
wf — w;. Then, the integral electron emission probablhty in Eq. (S36) can be written as

11 > > W T [}
P(R) = LS :Mﬁ/ dt/ dr 6917 €4, 9B (Rit, t;1 + 7t + 7). (S38)
’imf - -

We now switch to frequency space using the frequency representation of the positive and negative
frequency parts of the electric field operators in the field correlation function Eq. (S16)
. 1 [ o
EDR,t) = — / dt T EE (R, w). (S39)
27 J_
By doing so and integrating out any appearing delta functions we arrive at the integral electron
emission probability

11 © dw [ du -
S . - H o ap . P A o
PR) = o OB ;Mfz /_OO o /_oo o E3a™ Rywyp — ', wiwy — w,w) (540)

with the frequency representation of the field correlation function g’gaaﬁ (R;wi,wh;wi,ws). Now it
becomes apparent that the matrix elements My, just act as weights for the the different frequency
components of the field correlation function. If the matrix elements are sufficiently constant over
the bandwidth of the field correlation function we might assume My; ~ M and thus write for the
integral electron emission probability in its frequency representation

(/J = dw/ ¢ af / /
P(R) zn 9nt Z 2 5 €5 (Riwpi =/ wswpi —w,w) - (S41)
—0o0
Switching back to the time-domain leaves us with
P( 271_ 9h4 Z/ d# / dt ezwfz (t— t)gﬁaaﬁ (R; t/,tl;t,t) . (842)

If the bandwidth of available second-order transitions i — f is large compared to the bandwidth of
the field correlation function we might switch to the appropriate continuum limit. If we introduce
the transition density p(w) =3, ; 6(w — wy;), we can write

1 M uu
PR) = Smont dt/ dt/ dw p(w)e™ = f)gﬂ (R;t’,t’;t,t), (S43)

Assuming that the transition density is sufficiently broadband compared to the bandwidth of the field
correlation function, it is reasonable to approximate
75 dwp(w)e w(t=t") ~ 276(t — t') and we finally arrive (after integrating out this delta function) at
the integral electron emission probability

M

dt E5,°7 (R;t, 51,1 . (S44)

We note that this equation is a direct quantum mechanical generalization of Eq. (S8), where all
material degrees of freedom have been integrated out.
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1.5 Field correlation function

We are left with computing the equal-time field correlation function. We first explicitly split the
electric field operator into the SPP mode and the probe field mode E®) (R, t) = E(Sf)P(R, t) +
Eg) (R,t — At), where At is the pump-probe delay. Then, the field correlation function can be

obe
expanded as

00" (R.80) = ((B2)), (BEe), (B60)" (BE2))
raref ((BR), (B), (B6)" (B65)") }
)

B) (BG)" (6D

cone{{ (63, (853, (5)"(52.)) )
roned ((BGh), (B4, (B6.)" (250)") |
(o), (o5, (e5)”(50)),

where we left out the arguments of the field operators for clarity. Clearly, the field correlation
function includes all possible fourth-order mixings of the SPP and the probe field operators.

To proceed with the calculation of the field correlation function we first need to quantize the SPP
and the probe field as defined in Sec. 1.1. For this we employ standard canonical quantization of
the defined mode functions [14] such that we have

~(+) ] hw 1 it

EProbe(r7 t) =1 2€0V meProbeuProbe(r)e wta’ (8463)
S (+) . I, 1 it}

E t) = b 46b
spp(r,t) =iy/ 2egV Mespp(z)uspp(r)e , (S46b)

where we introduced the annihilation operator for the probe field mode @ and for the SPP mode b.
We also introduced the quantization volume V' and appropriate normalization constants Np,ope and
Nspp for the mode functions, which’s values are not relevant to our discussion. Using the same
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arguments as in Sec. 1.2 we again set z = 0~ and thus approximate the the field operators by

- .| hw 1 it

Eg;gbe(R» t)=i W\/NTGProbee ‘a (S47a)
- hw 1 , o
EGGh(R, 1) =i 250Vm€SPPeZkSPP'r6_Mb, (S47b)

where we absorbed the amplitude transmission coefficient into the normalization constant of the
probe field Nprobe — Nprobe T -

1.5.1 Transition Rate

We will see in the following section that the explicit time-dependence of the field correlation function
cancels out and we are only left with a dependence on the pump-probe delay At, i.e. the time
between the excitation of the SPP mode and the arrival of the probe laser pulse at the sample
surface. Just like in Sec. 1.2.1 we thus switch to the electron emission probability per unit-time, i.e.
the transition rate

dPR) M d [t M
quantum _ _ -~ / af Y R AN af
ren(R) = T 2 2 /_ W (Rt 5t ) = 358" (RUAL), (549

which is a direct quantum mechanical generalization of Eq. (S9). We note that our experiment
essentially measures the fourth-order field correlation function of the probe field and the SPP field.

We now insert the electric field operators for the SPP field and the probe field Eq. (S47) into the
field correlation function Eq. (S45) and arrive at the transition rate

2 4 2 4
Fg;%néum(R,At) M < hew ) l€probel (deT&d>A +M< fiw ) lespp| <6T6T(}6>6

Tont\250V ) N 79t \250V ) Nipp
n ﬂ hw 2 |€Prolﬁ)e|2|€SPP|2
9nt \ 260V NprobeNspp

x 2

I e € € kg e

X ((deT&b)& + (aTbTha), + % <<&T5T&b>& + <deTb&>&)>
robe

2 *
Lo M4 ( hw ) Re J __€Probe " €SPP__i(kspp-R—wAt)
9h* \ 2e0V vV Nprobe VNspP

|6pr0be’2 Atatar At atya |Espp|2 At7T77 1Ttz
1trobel b . ba) - L b'bb) . b'a'bb) .
X ( NProbe (<a aa >U + <a a a’)a’) + NSPP <<a >G + < a >G>

M [ hw \? €. - €spp|’ : _ -
o robe R { i(2kspp-R—2wWAL) (ot aT]}) A}.
T ont <2€0V> NoropeNapp L (@'ateh)

(S49)

Formally, this transition rate has a similar structure like Eq. (S10), except for the appearance of
quantum-mechanical constants and expectation values of fourth-order mixings of the creation and
annihilation operators for the fields.
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Again, like in our classical treatment, we switch to reciprocal space by a Fourier-transform of
Eq. (S49) in the 2-D position coordinate R. We arrive at the transition rate

TR (K, A

hw 2 |‘5Probe‘4
NE
? lespp|*
Nipp
? |eprove’|espp |

N ProbeN SPP

2
|€l>;robe : €SPP|

M

~ ot 20V
M, hew

+ g (2770 (K) (280‘/)

M hw
+ @(zn)%(K) (260‘/)

x | (bfatab), + (a'bfba), + - 5
|€probel”|€sPP|

(a'alaa),

(2m?8(1)

robe

(b'bbb),

( (@fbtaby, + (batba) U))

M 2 ( hw >2 €Probe * €SPP _iwAt
+—(2m) (K — k 1000 e
9h4 ( ) ( SPP) 250‘/ V : ;Probe Vv : ;SPP
2 2
» (IN_! (t@lalab), + @lalia),) + 5L (Gl + <zs*afzszs>f,))
rooe
M 2 ( fiw )2 €Spp * €Probe WAt
+—(2n)%5(K+k e
9h4 ( ) ( SPP) 250‘/ V : \_/Probe V : ;SPP
2 2
X (—lj\P/;bz’ ((lﬁd%d% + <&T5T&d>&> + —|€S§§i <<5T5T8&>a + <5T5T&8>&>)
M 9 hw \? (€hrobe “ €5PP)?  _niwat 1137
“—(2m)%8(K — 2k WAt (5TaT0D)
+ 9h4( 7[') ( SPP) <2EOV> Nprobe/Nspp ‘ <a ¢ >U
M 9 hw 2 (Egpp '€Pr0be)2 2iwAt 7T7T A A
+ 2= (27)%5(K + 2k WAt (hthtaa) . .
9h4( )" spp) <2€0V> NowobeNspp (breaa);

(S50)
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In our experiment we have the probe polarization collinear with the in-plane component of the
SPP polarization. By considering the orientation of these polarizations we further simplify the
transition rate and arrive at

uantum M
TR ™ (K, At) = W(%)%(K) (

hw )2 (atataa),
250‘/ ngrobe

M 2 hw 2 L 2 2 <BT6T£6>&
+ o) (50 ) (1+ ledeel ) 2

M, hw \? 1
(2 K
+ 9h4( )74 )<250V> NprobeNspp

x ((afbraby, + (Batha), + (1+ ledpp] ) ((Batab), + (aTi'ba), ))

M 2 h/w 2 1 —iwAt
+ —(27m)“0(K — kspp ( > e v
9h4( ) ( ) 250‘/ \/:;Probe\/:;SPP

y (atatab), + (atatba), N (1 el |2) (atbtod), + (btatbb), (S51)
NProbe PP NSPP

M, hw \? 1 e
+ —(2m)*0(K + kgpp ( > etwat
9h4( ) ( ) 250‘/ \/:;Probe\/:;SPP

s ((iﬂeﬁ&a)& + (atbTaa), (b'btba), + (bibTab) &>

+ <1 + |egpp] 2)
NProbe NSPP

=+ M(QT()QCS(K — 2kspp) <

fiw )26—2iwAt <&T&T58>6’
9nt

2€0V NProbeNSPP
(btdtaa),
NProbeNSPP '

M

2 hw ? 2iwA
+ (2 K + 2k — iwAt
97"14( 7T) 5( SPP) <2€0[/ ) c

1.5.2 Connection to experimental intensities

While Eq. (S51) in principle enables a full quantum-mechanical description of the electron yield
in our experiment, its connection to the experimentally varied intensities of the SPP field and
the probe laser is not directly evident. In the following we will map the fourth-order expectation
values in the transition rate to products of the intensities of the fields. We first notice that not
all expectation values in the transition rate are independent. In fact, if we consider the canoncial
commutation relations for the creation and annihilation operators for the probe field and the SPP
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field, we find that

(Probe (AProbe — 1)), = (atalaa), (S52a)
(gpp(gpp — 1)), = (bT01Db) (S52b)
(iprobeiisprp)s = (aTblab), = (blalba), = (b'alab), = (a'bba),,  (Sh2¢)
(éiprobe)y = (aTalab), = (afalba), , (852d)

(isppé); = (alb1bb), = (blalbb), , (S52e)

(provee’), = (ba'aa), = (a'blaa), (552f)
('hspp), = (bTbTbay, = (biblab), , (S52¢)

(é¢) = (aTalbb), (S52h)

<6T6T> = (b'btaa), , (952i)

where we introduced the occupation number operators for the probe field Apyope = @@ and the
SPP field ngpp = BTZ), and the mutual coherences ¢ = a'b and ¢ = bfa. In other words, all
fourth-order expectation values in the field correlation function can be written as expectation values
of second-order products of the occupation number operators and the mutual coherences.

To deduce the scaling of the different terms in Eq. (S51) as a function of the experimentally
varied intensities, it is instructive to discuss Eq. (S52) under the assumption that the probe field
and the SPP field initially are in a coherent product state |a) ® |/3). Since the coherent states |a)
and |B) of the probe and SPP field satisfy the elementary relations

a ’a> =« |C¥> = ei¢a <ﬁProbe>& |C¥> (8533)
and b|B) = B18) = %4/ (nspp)s 8), (S53b)

we can easily factorize every normally-ordered product of creation and annihilation operators in
Eq. (S52) into simple products of complex numbers. We thus arrive at

<ﬁPr0be(ﬁProbe - 1)>5 = <ﬁProbe>c2} 5 (S54a>
(nspp(fspp — 1))5 = (Rspp)2, (S54b)
<ﬁProbeﬁSPP>5 = <ﬁProbe>& <ﬁSPP>g;7 (S54C)
, 3
<éﬁProbe>5 = ez¢\/<ﬁProbe>& \/<ﬁSPP>57 (S54d)
, 3
(Rsppé); = e“z’\/ <ﬁProbe>&\/ (Nspp)y (S54e)
' 3
(Iprobel’) s = 6_@\/ (NProbe) s \/ (NSPP) g (S54f)
. 3
(Thspp), = 8_Z¢\/<ﬁprobe>a\/<ﬁSPP>& ; (Sh4g)
(€¢) = € (Aprobe) s (ASPP)s (S54h)
(816 = €7 (Apyone)y (spp)y (554i)
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with the phase difference of the coherent states ¢ = ¢35 — ¢o. We can now combine Eq. (S52) and
Eq. (S54) and insert them into the transition rate Eq. (S51) to arrive at

M hw \? ( (probe)2 2\2 (fspp);
Fquantum K. At) — 92 2 K robe/g 1 1 g
S, A0 = 35 () (o ) ( Tle 1 (14 ederl ) gl

~oond

M o o hw \° (probe)s (ASPP)s L2
" 2W(2ﬂ-) 5(K) <2£0V> NProbeNSPP <2 + |ESPP| )
+2M(27T)2 ( hw )2 \/<ﬁProbe>a\/<ﬁSPP>&
2e0V VNprobe vV Nspp (555)

9ht
{(fProbe) 5 L2 (Nspp) ; >
N\ 1t Aot/
X (5(K — kspp)e—??(wAt—tﬁ) +5(K + kSPP)ei(wAt—¢)>
2 /o .

+ %(271')2 < hw ) (NProbe)s (NSPP) s

S ZEOV NProbeNSPP
x (8K — 2kspp)e M2 4 §(K + 2kgpp)e @190

Finally, we substitute the expectation values of the occupation numbers by the respective

expectation values of the intensities, that is use the identities

; 1 6 ) 1 hw 1
<IPr0be>[; = §CProb650 <EPr0be ' EProbe>& = §CProbe50W/WObe <nPr0be>& (8563)
1 R . 1 hw 1+ |edopl” .
(+) | SPP‘ <nSPP>57 (S56b)

Tapp). = — | DISUANE | SRR
(Ispp); = Sespreo (Egpp - Egpp), QSPPE0G R

where cprobe and cspp are the propagation speed of the probe field and the SPP field. With this we
rewrite the transition rate in Eq. (S55) in terms of the intensities of the fields as

M (47> (Iprobe)>  (Ispp)2
l—xquantum(K, At) _ <_) (S(K) robe/ g + a
2PPE 9h4 €0 c%’robe C%PP

M (4_7'(')25 K) <fProbe>& <jSPP>5— 2+ ‘Eé_PPl ?

+2—
9ht \ g CProbeCSPP 1+ ‘Eé_PPl 2
) M (4m 2 <jProbe>3 (jSPP>& <jPr0be>a- <jSPP>&
toom \ 5 e T (S57)
CProbeCSPP(l + IGSPP| ) Probe SPP

% (5(K — kspp)e @A) 4 §(K + kSPP)ei(wAt_d)))

M (47\?  (Iprobe)s (Ispp)s,
Tont = Lol
€0 CPrObeCSPP(1 + |ESPP| )
X (6(K — 2kgpp)e” ZWAI=?) | §(K + 2kSPP)e2i(wAt_(b)> :

This result is a direct quantum-mechanical analogue of Eq. (S14). It should again be highlighted,
that the coherent state approximation for the transition rate as a function of the intensities is
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an approximation and should only exemplify how to map the observed intensity scalings of the
different measurement signatures to the different fourth-order correlation functions between the
SPP and the probe ficld. Ultimately, Eq. (S51) is more appropriate to understand the microscopic
quantum-mechanical processes giving rise to the observed measurement signatures.

It is, however, possible to incorporate deviations from the idealized coherent states of the SPP
and probe field into Eq. (S57). For example, instead of assuming that the probe and the SPP field
are in coherent states one could factor out in Eq. (S51) the commonly used second-order (mutual)
coherence functions

2 <ﬁProbe(ﬁProbe - 1)>&
gl(z’r)obe,Probe = ~ 2 (8583‘)
<nProbe>c}
2 nspp(nspp — 1)) 5
gégP,SPP = ( (A 2 ) (S58b)
(fspp) 5
(2) o <ﬁProbeﬁSPP>& S58c
9Probe,SPP (Aiprobe)s (ASPP), ( )
0% e = bl (8554)
V (tProbe) s v/ (isPP) 4
2 NSppE);
o8, = —Anseedls (S58¢)
\/<nSPP>& \/<nProbe>a-
98 = (6 (S58f)

(Nprobe)s (NSPP)s

and then again follow our derivation. One would then arrive at a generalization of Eq. (S57), where
each contribution is weighted by the respective second-order coherence function. Such a formulation
of our theory might enable to deduce deviations from the idealized coherent state picture directly
from experimental data. For example, if instead the SPP and the probe field would initially be in a
Fock product state all terms involving the coherence ¢ would vanish and thus no interference would
be visible in the experiment.
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Supplementary Note 2: Background subtraction
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Figure S1: (a) Exemplary data for the electron yield at K = 0 as a function of the probe power. The
polynomial fit to the data is show as the red line. (b) Background corrected data obtained
by fitting the electron yield for each pump power and subtracting the fit constant cg.

In the main text we study the dependence of the electron yield in reciprocal space on the power of
the probe laser pulses. Our theoretical treatment in the previous section shows, that the component
of the electron yield with K = 0 consists of contributions proportional to If;robe, 1 §PP, and Ip,opelspp-
Additionally, in the experiment there is also a contribution to the electron yield at K = 0, which is
due to two-photon absorption directly from the probe laser pulses. Figure Sla exemplarily shows
the electron yield at K = 0 as a function of the probe power on a double-logarithmic scale. It is
evident, that the different contributions to the electron yield can not directly be distinguished from
the data because of the constant background contributions that do not depend on the probe power.
We thus fit the data by a fourth-order polynomial

Y(K = 0) = C4E§’robe + CQE%I’obe + co, (859)

which is shown by the red line in Fig. Sla. The coefficients ¢; are the fitting parameters, where the
constant background ¢y includes the contributions by plasmoemission proportional to I§PP = E§PP
and by direct two-photon absorption from the pump laser pulses. The fitting constants ¢y and
co, however, depend on the pump power, since both the SPP field-strength and the two-photon
absorption from the pump are both pump power dependent. We can correct for the background
contribution by subtracting the fitted value of ¢y for each pump power from the experimental data
and arrive at the data in Fig. S1b, which is discussed in the main text.
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