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Advancing resonant nanophotonics requires novel building blocks. Recently, cavities in high-
index dielectrics have been shown to resonantly confine light inside a lower-index region. These so-
called Mie voids represent a counterpart to solid high-index dielectric Mie resonators, offering novel
functionality such as resonant behavior in the ultraviolet spectral region. However, the well-known
and highly useful Babinet’s principle, which relates the scattering of solid and inverse structures,
is not strictly applicable for this dielectric case as it is only valid for infinitesimally thin perfect
electric conductors. Here, we show that Babinet’s principle can be generalized to dielectric systems
within certain boundaries, which we refer to as the quasi-Babinet principle and demonstrate for
spherical and more generically shaped Mie resonators. Limitations arise due to geometry-dependent
terms as well as material frequency dispersion and losses. Thus, our work not only offers deeper
physical insight into the working mechanism of these systems but also establishes simple design
rules for constructing dielectric resonators with complex functionalities from their complementary
counterparts.
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Introduction. Babinet’s principle is a fundamental
concept of electromagnetism that establishes a direct
relation between the scattering properties of infinitesi-
mally thin perfect metallic conductors and complemen-
tary apertures in metal sheets [1]. In optics, Babinet’s
principle can be reformulated for diffraction patterns pro-
duced by source radiation passing through complemen-
tary metallic screens with interchanged series of holes and
obstructions [2], leading to an exchange between trans-
mission and reflection for perfect conductors. The gen-
eralized form of Babinet’s principle provides an approx-
imate relation between transmission and reflection from
flat absorbing scatterers and complementary apertures in
absorbing media [3].

In the early 2000s, Babinet’s principle was applied
for the design of plasmonic metamaterials and meta-
surfaces [4, 5]. It was shown that the latter can be
re-formulated for the field profiles of the electromag-
netic resonances, connecting the electric and magnetic
fields of normal and inverted structures [6]. In partic-
ular, electric and magnetic fields exchange their roles
inducing a flip between TE and TM polarizations [7].
The Babinet principle was also explored in the frame-
work of the covariant coupled-dipole method [8]. Later,
the concept of self-complementary metasurfaces was pro-
posed based on the Babinet principle and electromag-
netic duality [9–12]. Based on that concept, a new type
of surface waves in self-complementary metasurfaces was
suggested and extensively studied [13–15]. In recent
years, the engineering of resonant metasurfaces based on
Babinet’s principle was actively employed in plasmon-
ics [16, 17]. More specifically, it was applied for creating

double negative index materials [18], manipulating po-
larization [19], enabling topological properties [20, 21],
wavefront control [22], filtering [23], coherent perfect ab-
sorption [24], observing plasmonic electromagnetically
induced transparency [25, 26], magnetic near-field imag-
ing [27], and simultaneously realizing magnetic and elec-
tric hotspots [28].

Dielectric metaphotonics emerged recently as a promis-
ing alternative to plasmonics, featuring high-index di-
electric and semiconductor nanoresonators as building
blocks of photonic structures [29, 30]. Resonant dielec-
tric metastructures supporting geometric Mie resonances
were shown to exhibit artificial magnetic response, lead-
ing to versatile interference effects and strong field con-
finement in the volume of material, useful for nonlin-
ear and quantum applications [31]. Mie resonances can
be engineered in individual nanoresonators or their ar-
rays in the form of metasurfaces and photonic crystal
slabs. They manifest as localized modes or nonlocal lat-
tice modes, and give rise to unusual optical phenomena,
such as bound states in the continuum [32, 33], anapoles
[34, 35], or directional scattering [36].

Very recently, the concept of Mie voids was proposed
in dielectric metaphotonics [37]. Counter-intuitively, it
was found that low-index materials inside a high-index
environment, such as air voids in silicon, can support
Mie resonances in the infrared, visible, and even ultra-
violet range due to confinement of light inside the air
region. It was also shown that such Mie void modes are
robust to geometrical and environmental changes, so that
these modes can be realized experimentally by bringing
the voids to the surface of thick silicon wafers. The voids
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FIG. 1. General concept. Quasi-Babinet principle establishes
a correspondence between mode properties of (a) a high-index
dielectric structure and (b) a low-index void in high-index di-
electric host medium as its inverse system. The void modes
exhibit a linewidth change ∆γ with respect to the mode of the
normal structure linewidth γ0, schematically shown with gray
arrows (top panels) and the radiated power (bottom panels).
The quasi-Babinet principle connects modes of orthogonal po-
larizations, such as a magnetic dipole (MD) and an electric
dipole (ED) Mie mode with their electric and magnetic fields,
E and H (schematically displayed by blue and red arrows),
respectively.

exhibit pronounced features in scattering, leading to the
generation of bright naturalistic colors with a high res-
olution [37]. In striking difference to photonic crystal
slabs and membranes based on collective lattice reso-
nances [38], even single Mie voids provide highly local
resonant properties operating as individual pixels. The
existence of such modes suggests that there might be an
extension of Babinet’s principle to lossless dielectric ma-
terials, defying conventional wisdom. Should it be es-
tablished, it could unlock new degrees of freedom for the
design of dielectric metadevices at the nanoscale.

In this Letter, we study similarities and differences of
Mie modes in voids and high-index nanoresonators. We
reveal that for spherical nanoparticles, a quasi-Babinet
principle can be established, connecting the electric
and magnetic fields of a structure and its complemen-
tary counterpart, as well as their resonant frequencies
and quality factors. The new principle holds quantita-
tively for voids (nanoparticles) with size larger than the
wavelength, and approximately for subwavelength voids
(nanoparticles). The principle remains approximately
valid for non-spherical geometries, except in the vicin-
ity of an avoided resonance crossing. Finally, we calcu-
late the mode parameters for realistic dielectric materials
with material losses in the visible and ultraviolet spectral
range and demonstrate that the Babinet’s principle is not

applicable in the region of high absorption due to differ-
ent loss rates for voids and nanoparticles, as intuitively
expected.
The quasi-Babinet principle for spherical resonators.

Babinet’s principle offers a framework for correlating the
scattering characteristics of two complementary struc-
tures. We emphasize that this principle is strictly valid
only when both structures are fabricated from infinitesi-
mally thin, metallic perfect conductors. In contrast, for
dielectric materials with weak absorption used in dielec-
tric nanophotonics, Babinet’s principle is generally not
applicable. We consider two complementary dielectric
structures that are schematically shown in the top panel
of Fig. 1: a high-index sphere with internal refractive in-
dex ni immersed in a low-index exterior composed of a
medium with refractive index ne ≪ ni and a low-index
void in a high-index host medium with ne ≫ ni. We now
study the applicability of Babinet’s principle for these
two scenarios. In the following, we use the term “normal
structures” referring to dielectric particles, and “inverse
structures” when referring to the voids embedded in a
dielectric medium.
We start by investigating the behavior of the eigen-

modes supported by the normal and inverse structures.
The latter can be classified into transverse electric (TE)
and transverse magnetic (TM). Mie theory [37, 39] yields
the complex resonant wavenumbers k0 = ω/c for the nor-
mal and inverse cases, as solutions to the following tran-
scendental equations:

TM modes :
ψ′
l(nik0R)

ψl(nik0R)
=
ni
ne

ξ′l(nek0R)

ξl(nek0R)
, (1)

TE modes :
ψ′
l(nik0R)

ψl(nik0R)
=
ne
ni

ξ′l(nek0R)

ξl(nek0R)
. (2)

Here, l = 1, 2, . . . is the orbital mode index, and ne
and ni are the refractive indices outside and inside the
sphere with radius R, respectively. The prime denotes
derivatives with respect to the argument, and ψl as well
as ξl are the Riccati-Bessel functions of order l, with
ψl(x) = xjl(x) and ξl(x) = xhl(x), where jl and hl are
the spherical Bessel and outgoing spherical Hankel func-
tions, respectively. We note that the modes of spherical
particles are degenerate with respect to the azimuthal
index m = 0,±1,±2, . . . ,±l.
We can expand the left and right part of Eqs. (1,2)

in a series with respect to 1/z for z = nik0R, assuming
z ≫ 1, and solve the equation up to a specific order
of this parameter. For normal (ne ≪ ni) and inverse
(ne ≫ ni) structures, the solutions up to second order
are (see Supplementary Material, Sec. I.A [40])

zls≈ z̃l+1,s−
l(l+1)

2z̃l+1,s
∓i ni
ne

l(l+1)

2z̃2l+1,s

for

{
TM normal

TE inverse
, (3)

zls≈ z̃ls −
l(l+1)

2z̃ls
±i ni
ne

l(l+1)

2z̃2ls
for

{
TE normal

TM inverse
. (4)
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FIG. 2. Demonstration of the quasi-Babinet principle for a
high-index dielectric sphere with ni = 4, ne = 1 and a spheri-
cal low-index void with ni = 1, ne = 4. (a) Mode wavenumber
Re (nik0R) vs. mode linewidth −2 Im (nik0R) for l = 1 ob-
tained via solving Eqs. (1,2). (b) Relative error |1− zls/z

ana
ls |

between the approximate solution zls of Eqs. (3,4) for differ-
ent orders of approximation and zanals as solutions of Eqs. (1,2)
for l = 1. (c) Field profiles in normal and inverse structures
for the fundamental MD and ED modes (s = 1, l = 1, m = 1)
labeled in (a) and fundamental magnetic quadrupolar (MQ)
and electric quadrupolar (EQ) modes (s = 1, l = 2, m = 1).

Here s = 1, 2, . . . is the radial mode index and z̃ls =
π (s+ (l − 1)/2) − iarctanh (n</n>) is the zeroth order
solution for n< and n> as the lower and higher refrac-
tive indices, respectively. We note that the expansion in
Eqs. (3,4) up to the zeroth order was known in the lit-
erature [41], but without acknowledging the similarities
between normal and inverse structures.

A comparison of TM results in the normal structure
and TE results in the inverse structure reveals that the
solutions are identical up to the first order of 1/z. The
same analogy can be made with TE results of the nor-
mal and TM results of the inverse structure. Therefore,
we conclude that spherical dielectric nanoparticles and
Mie voids are complementary up to the first-order in 1/z.
The difference in resonant wavenumbers for normal TE
and inverse TM (or, normal TM and inverse TE) modes
is given by the second-order correction, proportional to
l(l+1)/R2. We denote this approximate correspondence
as the quasi-Babinet principle. As a result of it, we will
show that the modes of the complementary structures
feature very similar resonant wavelengths, but different
linewidths, as schematically depicted in the bottom pan-
els of Figs. 1(a,b).

In the Supplementary Material, we evaluate mode

frequencies for a one-dimensional planar dielectric slab
and air slot waveguide obtaining closed-form expressions,
see [40, Sec. I.B]. The analysis proves that the quasi-
Babinet principle is exact for the slabs, since the mode
frequencies have the same form as the zeroth-order ap-
proximation for the spheres above.

Next, we evaluate the validity of the quasi-Babinet
principle numerically by comparing solutions zanals of
Eqs. (1,2) for normal (ni = 4, ne = 1) and inverse
(ni = 1, ne = 4) cases, corresponding to a silicon sphere
in air and an air void in silicon in the near-infrared range,
respectively. For solving the transcendental Eqs. (1,2),
we used a custom Python code. Figure 2(a) depicts the
mode linewidth with respect to the real part of resonant
wavenumbers for l = 1 and m = 1. We note the stud-
ied modes can be excited at plane-wave incidence. The
difference between the real part of nik0R for normal TE
(TM) and inverse TM (TE) modes is small (note the dif-
ferent scale of axis) and decreases with the increase of
the radial mode index s (from left to right). The differ-
ence between the linewidths of complementary modes is
larger, especially, for normal TM and inverse TE modes.
However, it also decreases with the increase of the ra-
dial mode index. Therefore, the quasi-Babinet principle
accuracy increases with the increase of s.

To quantify the validity of the approximate solutions in
Eqs. (3,4), we calculated the relative error |1− zls/z

ana
ls |

between the analytical wavenumbers zanals and the ap-
proximate zeroth- and second-order solutions zls for both
the normal and inverse cases, shown in Fig. 2(b). The in-
verse TE modes (red triangles) exhibits the highest accu-
racy for the second-order solution compared to the other
cases. We note Fig. 2(b) confirms that the zeroth-order
solution can be used to predict the location of the real
part of the resonant wavenumbers.

Figure 2(c) displays the absolute value of the electric
field E and magnetic field H for lowest-order multipolar
modes of the normal and inverse structures normalized
to their maximum values, which are magnetic dipolar
(MD) and electric dipolar (ED) modes with s = 1, l = 1
and magnetic quadrupolar (MQ) and electric quadrupo-
lar (EQ) modes with s = 1, l = 2. One can see a close
resemblance between the fields of the normal structure
modes and the corresponding modes of the void struc-
ture, confirming the validity of the quasi-Babinet princi-
ple.

We would like to mention that the quasi-Babinet prin-
ciple also holds for magneto-dielectric spherical struc-
tures with nonzero permeability and permittivity con-
trast (see Supplementary Material [40, Sec. II]). In this
case, the modes of normal and inverse structures also
obey the quasi-Babinet principle with the transition be-
tween “normal” and “inverse” defined via the inversion of
the relative impedance between the internal and external
domains of the sphere.
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FIG. 3. Quasi-Babinet principle for disk-shaped resonators: Mode wavenumber, quality factor, and field profiles vs. disk aspect
ratio for the fundamental modes of (a-c) normal (ni = 4, ne = 1) and (d-e) inverse structures (ni = 1, ne = 4), respectively.
Only the eigenmodes that can be excited by a plane wave incident along the cylinder axis have been considered. The line color
in (a,b,d,e) is defined by the mode’s far-field polarization degree. The insets displays data within a narrow range of parameters
near the avoided resonance crossing. The box line style in (c,f) denotes zy (solid) and zx (dashed) cross sections.

Non-spherical geometries. We furthermore analyzed
the applicability of the quasi-Babinet principle for res-
onators with non-spherical geometry. To do so, we com-
pared the eigenmode spectrum of a dielectric disk with
ni = 4 in air and a disk-shaped air void in an environment
with ne = 4. Figure 3 illustrates the mode wavenumber,
quality factor, and field profiles of the first three funda-
mental modes of the normal and inverse disk structures
as a function of the aspect ratio r/h of radius r and height
h, respectively. For numerical calculations, we used the
eigenmode solver in COMSOL Multiphysics©. Unlike
spheres, the eigenmodes of a cylinder have a mixed TE-
TM character [42, 43], i.e., they can radiate as mixtures
of multipoles. We characterize their multipolar nature
by performing a multipole decomposition of the eigen-
mode’s radiated power into TE and TM contributions,
which are then color-coded in Figs. 3(a,b,d,e) (see also
Supplementary Material [40, Sec. III]).

The quasi-Babinet principle holds well for mode 1, with
a relative difference in wavenumber values below 13% for

the given range of r/h. Importantly, mode 1 exhibits a
pure TE and TM nature for normal and inverse struc-
tures, respectively. The resonant frequencies of modes 2
and 3 avoid a crossing at r/h ≃ 0.535, a clear signature of
mode coupling. Despite these qualitative similarities, the
quasi-Babinet principle no longer holds in the vicinity of
the avoided crossing.

In the normal structure, modal interference results in
a decrease in the quality factor of mode 2, and a pro-
nounced peak of the quality factor of mode 3, signal-
ing the formation of a quasi bound state in the contin-
uum [44] of pure TE nature. This is in contrast to the
inverse structure [Fig.3(d,e)]. On the one hand, the cou-
pling between the modes is weaker, as can be seen from
the much smaller separation between the dispersions of
modes 2 and 3. On the other hand, the peak in the qual-
ity factor is less pronounced, but still mode 3 becomes
a pure TE mode. We note that the observed (small)
increase of quality factor for mode 3 at r/h ≃ 0.535 is
the first demonstration of the formation of quasi bound
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state in the continuum in individual void structures. The
field profiles for all modes at the avoided resonance cross-
ing and away from it are displayed in Figs. 3(c,f). From
the quality factor behavior and field profiles, we conclude
that the quasi-Babinet principle still holds approximately
for r/h < 0.5 and r/h > 0.6, i.e., when the hybrid modes
are spectrally separated.

Effect of material losses. We next analyze how the
material losses affect the range of applicability of the
quasi-Babinet principle. We calculate the resonant fre-
quencies of fundamental modes for normal (ni = n+ ik)
and inverse (ne = n+ ik) spherical structures composed
of air and high-index materials with realistic dispersion,
such as TiO2 and GaAs. We use a custom Matlab code to
solve Eqs. (1,2) with the material permittivity function
extended to the complex frequency plane by fitting to
several material poles (see Supplementary Material [40,
Sec. XX]). Figure 4 displays the material refractive in-
dex data, mode wavenumber Re (nik0R), quality factor
for MD and ED modes of normal and inverse spherical
resonators. Insets in Fig. 4(b) display a zoom into the

spectral region, in which a material pole hybridizes with
an optical resonance, resulting in two disconnected dis-
persion branches.

Figure 4 shows that the quasi-Babinet principle is valid
for the low-loss range, and the complementary modes
(normal ED with inverse MD, and normal MD with in-
verse ED) have very close wavenumbers. We see that in
the range of high material losses as well as in the vicinity
of material permittivity function poles, the quasi-Babinet
correspondence breaks down. We also note that the void
mode’s quality factors are large in the high-loss regime,
reaching values above 10 [37]. Finally, we analyze how
the absorption losses change the mode eigenfrequency for
normal and inverse structures using the zeroth-order ana-
lytical expression in Eqs. (3,4) (see Supplementary Mate-
rial [40, Sec. IV]). We show that the difference in relative
values of wavenumbers and quality factors for comple-
mentary normal and inverse structures in the low-loss or
non-dispersive wavelength range is defined by k/n and
small. We also demonstrate that in the high-loss or dis-
persive range the relative difference can be drastically
large, explained by the modes of inverse structures ex-
hibiting absorption only in the narrow domain of sur-
rounding media, compared to normal structure modes
that are affected by the material losses in the whole par-
ticle volume.

Conclusion. We have established a quasi-Babinet
principle that allows us to predict mode characteristics
of dielectric Mie voids from dielectric Mie resonators and
vise versa. We have determined analytically and numer-
ically the applicability range of the quasi-Babinet prin-
ciple depending on the spatial dimensionality, geometry,
and material losses of the structure. We anticipate that
extensions of this principle to magneto-dielectric struc-
tures may lead to further developments in epsilon-and-
mu-near-zero photonics, as well as open new horizons for
smart engineering of nanoscale metadevices comprising
applications in strong light-matter interaction, biosens-
ing, and quantum information processing.
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and M. Soljačić, Nature Reviews Materials 1, 1 (2016).
[33] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and

Y. Kivshar, Physical review letters 121, 193903 (2018).
[34] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M.

Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk,
B. N. Chichkov, and Y. S. Kivshar, Nature communica-
tions 6, 8069 (2015).

[35] A. Canós Valero, E. A. Gurvitz, F. A. Benimetskiy, D. A.
Pidgayko, A. Samusev, A. B. Evlyukhin, V. Bobrovs,
D. Redka, M. I. Tribelsky, M. Rahmani, et al., Laser &
Photonics Reviews 15, 2100114 (2021).

[36] W. Liu and Y. S. Kivshar, Optics express 26, 13085
(2018).

[37] M. Hentschel, K. Koshelev, F. Sterl, S. Both, J. Karst,
L. Shamsafar, T. Weiss, Y. Kivshar, and H. Giessen,
Light: Science & Applications 12, 3 (2023).

[38] M. Ossiander, M. L. Meretska, H. K. Hampel, S. W. D.
Lim, N. Knefz, T. Jauk, F. Capasso, and M. Schultze,
Science 380, 59 (2023).

[39] G. Mie, Ann. Phys. 25, 377 (1908).
[40] “See Supplemental Material at [URL will be inserted

by publisher] for the derivation of the analytical solu-
tion in Eqs.(3-6), derivation of the quasi-Babinet princi-
ple for magneto-dielectric materials, multipolar decom-
position for disk-shaped structures, numerical analysis
of the quasi-Babinet principle for cubic structures, de-
scription of numerical procedure used for eignenmode
analysis of dispersive structures, and analysis of absorp-
tion losses effect on the quasi-Babinet principle, which
includes Refs.[45–49] ,”.

[41] Z. Sztranyovszky, W. Langbein, and E. A. Muljarov,
Physical Review A 105, 033522 (2022).

[42] S. Gladyshev, K. Frizyuk, and A. Bogdanov, Physical
Review B 102, 075103 (2020).

[43] A. V. Kuznetsov, A. Canós Valero, H. K. Shamkhi,
P. Terekhov, X. Ni, V. Bobrovs, M. V. Rybin, and A. S.
Shalin, Scientific reports 12, 21904 (2022).

[44] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samu-
sev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar,
Physical review letters 119, 243901 (2017).

[45] E. A. Muljarov and W. Langbein, Phys. Rev. A 96,
017801 (2017).

[46] G. B. Arfken and H. J. Weber, Mathematical methods for
physicists, 6th ed. (Elsevier, London, 2011).

[47] E. A. Muljarov, W. Langbein, and R. Zimmermann,
Europhysics Letters 92, 50010 (2011).

[48] R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, Op-
tics Communications 407, 17 (2018).

[49] S. Gladyshev, O. Pashina, A. Proskurin, A. Nikolaeva,
Z. Sadrieva, A. Bogdanov, M. Petrov, and K. Frizyuk,
arXiv preprint arXiv:2308.04897 (2023).


	Quasi-Babinet principle in dielectric resonators and Mie voids
	Abstract
	Acknowledgments
	References


