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Abstract— Research in the field of quantum control usually
assumes complete knowledge of the state and parameters. In
this paper, a driven and damped two-level quantum system
under continuous observation is considered. Its time evolution is
governed by an operator-valued stochastic master equation and
conditioned on the recorded measurement data. The system is
transformed to state space representation and its observability
is proven analytically. An extended Kalman filter is employed
in order to both reconstruct the density operator describing
the full state of the system, and to dynamically identify key
parameters. Convincing results are obtained in numerical sim-
ulations. Overall, a practical engineering approach to quantum
control is presented.

I. INTRODUCTION

In recent years, with the emergence of next generation
quantum technologies, the gap between quantum mechanics
and classical engineering has been bridged. Of particular
interest for both fundamental research and development is
the adaptation of system theoretical approaches and control
engineering methods. Controlling a system implies stabil-
ising and driving it to a desired state in the presence
of uncertainties and disturbances. Using continuous mea-
surements of the system thereby significantly improves the
control performance. Due to the unusual nature of quantum
mechanical systems, transferring and implementing classical
control techniques is not straightforward, but presents an
interesting challenge [1], [2].

Most literature on the control of systems with quantum
mechanical properties either considers only Schrödinger pure
state dynamics [3], [4] or assumes full knowledge of both
the state of the system as well as all its parameters [5],
[6]. Approaches to make quantum control more practically
feasible were presented in [7] and [8], where imperfect
detection and feedback delay were taken into account, re-
spectively. First steps towards dynamical parameter estima-
tion based on Bayesian statistics were reported by [9] and
further developed by [10], [11]. In particular, the information
gain concerning the unknown Rabi frequency driving a
two-level atom is investigated. A parameter identification
scheme based on the analytically derived equilibrium point
of an open two-level quantum system is presented in [12].
Here, the decoherence rate is estimated from continuous
measurements, however, the implementation of the proposed
feedback control law requires further parameter values.
Dynamical quantum state estimation based on least-squares
minimisation and compressed sensing is explored by [13] and
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extended to include a state transfer feedback control by [14].
Moreover, to reconstruct the quantum state associated with
the total spin of alkali atoms, Bayesian filtering techniques
have successfully been adapted [15], [16]. For this, the
stochastic backaction of the quantum measurement process
on the system has been neglected. In [17], the analytical
proof is provided, that when using an appropriate feedback
control and having full knowledge of all relevant parameters,
the state of a continuously monitored spin- 1

2 system can be
reproduced by exploiting the direct coupling between the
system dynamics and the measurement record. In [18], [19],
the theoretical applicability of an analogue of the classical
Kalman filter for state estimation in linear quantum systems
is derived. However, their analysis is restricted to (quasi-
classical) Gaussian states. A Kalman filter has also been
used by [20], [21] in atomic magnetometry to estimate the
spin component in z-direction as well as the strength of an
external magnetic field, but only a simplified and heavily
reduced system is considered.

To the authors’ best knowledge, at the time of writing, no
conventional observer for state and parameter estimation has
been properly proposed, and research in quantum control
is mostly theory driven. Within the scope of this paper,
we aim to step away from theory and towards a more
engineering related approach to quantum control: Our main
contribution is the application of a classical method of
control engineering to quantum mechanics. Specifically, a
Kalman filter is employed to both estimate the full state of a
quantum system and to dynamically identify key parameters
at the same time. Thereby, a practical framework for further
research in the field of quantum control is established.

II. SYSTEM MODEL

Widely considered the simplest quantum system of rele-
vance, the two-level system exhibits several system theoreti-
cally interesting quantum characteristics and has successfully
been used to model e.g. atoms interacting with light, spin-
1
2 systems like electrons or qubits, the building blocks for
modern quantum technologies [22]. In any case, apart from
the parameters, the mathematical structure of the system
remains the same. Moreover, the transition to N-level systems
is mostly straightforward, which further increases its theo-
retical significance. As this paper aims to provide a proof of
concept regarding the application of a core method of control
engineering to quantum mechanics, we won’t consider any
specific physical system, but rather a generic open two-level
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system. In this section, a suitable mathematical model is
derived in Dirac notation.

In Fig. 1, a schematic abstraction of a driven and damped
two-level system is shown. As the name suggests, only two

E1 |1⟩

E2 |2⟩

∆E = h̄ωR Γ

u(t)

Fig. 1. Schematic representation of a damped and driven two-level quantum
system.

discrete energy levels E1 and E2 > E1 are considered here.
These are associated to the energy eigenstates |1⟩ and |2⟩,
which form an orthonormal basis of the two-dimensional
complex Hilbert space C2 of pure system states. Visualised
by the dark blue snake arrow, the system is damped, i.e. it
decays from the energetically excited state |2⟩ to the ground
state |1⟩ by rate Γ > 0. Level transitions are described using
the non-Hermitian raising and lowering operators

σ+ = |2⟩⟨1| ,

σ− = |1⟩⟨2|= σ†
+.

(1)

These result from the eigenproblem

σ+ |1⟩= |2⟩ σ− |1⟩= 0

σ+ |2⟩= 0 σ− |2⟩= |1⟩

and allow to define the three Hermitian Pauli operators

σ1 = σ−+σ+,

σ2 = i (σ−−σ+) ,

σ3 =
1
2 i

[σ1, σ2] = |2⟩⟨2|− |1⟩⟨1|

(2)

for the system. Here, [A, B] = AB − BA denotes the com-
mutator of A and B, and i is the imaginary unit. Clearly, |1⟩
and |2⟩ are also eigenstates of the inversion operator σ3. This
implies, that the system’s time-invariant free Hamiltonian can
be written in terms of σ3 as

H0 = E1 |1⟩⟨1|+E2 |2⟩⟨2|=
h̄ωR

2
σ3,

where h̄ is the reduced Planck constant, ωR = h̄−1 (E2 −E1)
denotes the system’s resonance frequency and E1 = −E2 is
assumed without loss of generality.

The system is driven by an external classical monochro-
matic electromagnetic field

u(t) = ε Ê cos(ωF t) (3)

with unit polarisation vector ε , amplitude Ê and angular
frequency ωF (ref. Fig. 1, light blue snake arrow). This input
explicitly does not depend on the state of the system, i.e. we

do not consider feedback control here. The coupling between
the system and the field is described by the dipole-interaction
Hamiltonian

HI (t) =−d u(t) (σ++σ−) =−d u(t)σ1

with the transition dipole matrix element d assumed to be real
and non-zero. It is common practice to express the coupling
strength in terms of the Rabi frequency Ω = d ε Ê

h̄ , such that
the total Hamiltonian of the system can be written as

H(t) = H0 +HI(t) = h̄
(ωR

2
σ3 −Ω cos(ωF t)σ1

)
. (4)

Note, that within the scope of this paper, the widespread
rotating wave approximation is not being made.

The Hamiltonian (4) is the generator of the unitary time
evolution of the system according to the Schrödinger-von-
Neumann equation. However, introducing damping phe-
nomenologically as decoherence, induces non-unitary dy-
namics and thus, the system’s time evolution is given by the
Born-Markov master equation in Lindblad form [22], [23]

ρ̇ =− i
h̄
[H, ρ]+ΓD [σ−]ρ, ρ(0) = ρ0, (5)

where the pure or mixed state of the system at time t is
represented by the positive semi-definite Hermitian density
operator ρ(t), Tr{ρ}= Trace{ρ}= 1, acting on the Hilbert
space C2 of the system. The Lindblad superoperator

D [c]ρ = cρ c† − 1
2
(
c† cρ +ρ c† c

)
, (6)

defined for some arbitrary operator c, can be regarded as
an irreversible loss channel, describing here the decay from
level |2⟩ to |1⟩ mediated by the lowering operator σ−.

A. Continuous measurement process

The measurement process constitutes a key difference
between classical and quantum mechanical systems, as in
the latter, it directly and inevitably influences the system’s
state. In fact, the so called backaction of a measurement adds
a stochastic term to the deterministic system dynamics [7].
In the following, we consider a continuous measurement of
the observable O = σ3

2 by weakly coupling the system to a
readout probe field. This results in the measurement output
[24], [25]

I (t) =
√

η M Tr
{(

O +O†) ρ(t)
}
+ξ (t), (7)

where η ∈ [0, 1] denotes the detector efficiency (η = 1
implying perfect detection), M > 0 the interaction strength
and ξ (t) represents Gaussian white noise. The evolution of
the system conditioned on the observation record (7) is then
given by the stochastic master equation [12], [26]

dρ(t) =− i
h̄
[H(t), ρ(t)] dt +ΓD [σ−]ρ(t)dt

+M D [O]ρ(t)+
√

η M H [O]ρ(t)dW (t),
(8)
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where dW (t) = ξ (t)dt is an infinitesimal Wiener increment
satisfying E [dW (t)] = 0, E

[
dW (t)2

]
= dt. Here, the incre-

mental notation highlights that (8) is a stochastic differential
equation in Itô-form, where the superoperator

H [c]ρ = cρ +ρ c† −Tr
{

cρ +ρ c†} ρ, (9)

defined for some arbitrary operator c, is the diffusion in-
troduced by the measurement backaction and the second
Lindblad term models the unconditional interaction with the
measuring device [27].

Note, that while the stochastic master equation as stated
in (8) describes a general continuous quantum measurement,
it is most often used in the case of homodyne detection [21],
[28].

B. Transformation to state space representation

The conditional dynamics of the continuously monitored
two-level system are completely described by the stochastic
master equation (8). In the following, an equivalent state
space representation, conventionally used in control engi-
neering, is derived.

Since the Pauli operators (2) and the identity operator 1
together form a basis of the vector space of Hermitian
operators acting on C2, using the spinor representation

|1⟩=
[

1
0

]
, |2⟩=

[
0
1

]
, (10)

the density operator can be expanded as linear combination

ρ(t) =
1
2
(1+ x1(t)σ1 + x2(t)σ2 + x3(t)σ3)

=
1
2

[
1− x3(t) x1(t)+ i x2(t)

x1(t)− i x2(t) 1+ x3(t)

]
,

(11)

where the time-dependant dimensionless coefficients x j(t) ∈
R, ∑x2

j ≤ 1, j = 1,2,3 are called Bloch coordinates. These
constitute the state vector x∈R3. Most notably, x3 ∈ [−1,+1]
gives the probability of the system to be in state |1⟩ or
|2⟩, respectively, while x1,2 describe the complex coherence.
Taking the time derivative and substituting (8) yields the
stochastic system dynamics in Itô state space form

dx =

 −Γ+M
2 x1 −ωR x2

ωR x1 − Γ+M
2 x2 +2Ω cos(ωF t) x3

−Γ (1+ x3)−2Ω cos(ωF t) x2


︸ ︷︷ ︸

=: f (t,x)

dt

+
√

η M

 −x1 x3

−x2 x3

1− x2
3


︸ ︷︷ ︸

=:g(x)

dW

= f (t, x) dt +g(x) dW, x(0) = x0 ∈ R3.

(12)

The output equation (7) is rewritten accordingly as

y =
√

η M x3︸ ︷︷ ︸
=:h(x)

+ξ = h(x)+ξ , y ∈ R. (13)

Finally, on the interval t ∈ [0, T ] , T > 0, the Euler-Maruyama
method yields the discrete approximation

xk+1 = xk + f (k ∆t, xk) ∆t +g(xk) ∆Wk, (14)

yk = h(xk)+
∆Wk

∆t
, (15)

k = 0, . . . ,
T
∆t

−1, (16)

with step size ∆t and ∆Wk ∼ N (0, ∆t). In this form, a
unique quantum mechanical feature of the system is easily
seen, i.e. the fact, that the same stochastic term ∆Wk affects
the state dynamics (14) as well as the measurement output
(15), therefore effectively coupling both equations. This
conditioning marks a substantial difference from classical
stochastic differential equations.

III. OBSERVER DESIGN

Having derived a suitable stochastic state space repre-
sentation for the two-level system, subsequently, a state
observer is designed. Essentially, an observer is a separate
dynamic system that reconstructs the internal states of a
given reference system from its known input and measured
output signals. The prerequisite for this is, that the system is
observable. For system (12–13), this is established through
the following lemma.

Lemma 1 ([29]): A non-linear system

ẋ = f (t, x), x(0) = x0 ∈ Rn

y = h(x), y ∈ R

is locally observable, if the observability matrix

Q(x) =
∂
∂x

[
L0

f h(x) L f h(x) . . . Ln−1
f h(x)

]⊤
with L f h(x) = ∂h

∂ t f (t, x) satisfies rankQ(x) = n.
Since this condition is satisfied for t ̸= π (2n+1)

2ωF
, n ∈ N, it

is possible to reconstruct the full state vector x, and thus the
entire density matrix ρ , from the recorded measurement data
(7). This is accomplished by an extended Kalman filter [30].

As optimal state estimator, the Kalman filter is widely used
in control engineering, especially in robotics and navigation.
It arises from the minimisation of model uncertainties and
measurement errors, and is evaluated recursively at each time
step k. Conventionally, the filtering algorithm is split into two
separate phases:

First, in the prediction phase, the current estimate of
the state x̂+k is propagated through the deterministic system
dynamics

x̂−k+1 = x̂+k + f
(
k ∆t, x̂+k

)
∆t,

P−
k+1 = Ak P+

k A⊤
k +Q

(17)

to produce an a priori state estimate x̂−k+1 for the next time
step. Similarly, an a priori estimate of the prediction error
covariance matrix P−

k+1 is computed. The initial guess P+
0 ≥ 0
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encodes the confidence in the estimate of the initial condition
x̂+0 . The state transition matrix

Ak = 1+∆t
∂ f
∂x

∣∣∣∣
k ∆t, x̂+k

is the result of a local first order Taylor linearisation of the
non-linear deterministic system dynamics and Q ≥ 0 is the
covariance matrix of the process noise induced by ∆Wk.

Secondly, in the correction phase, the latest measurement
result yk is incorporated by updating the predictions (17) to
the a posteriori estimates

x̂+k+1 = x̂−k+1 +Kk

(
yk −h

(
x̂+k

))
,

P+
k+1 =

(
1−Kk Ck

)
P−

k+1.
(18)

The observation matrix

Ck =
∂h
∂x

∣∣∣∣
x̂−k+1

is the result of a local Taylor linearisation of the deterministic
output function h(x), while the Kalman gain

Kk = P−
k+1 C⊤

k

(
Ck P−

k+1 C⊤
k +R

)−1
(19)

additionally takes the covariance R > 0 of the measurement
noise (∆t)−1∆Wk into consideration.

While linearising at every time step does limit the ob-
server’s theoretically guaranteed optimality, it constitutes
a reasonable payoff between near-optimality and computa-
tional cost.

IV. RESULTS

In this section, several numeric simulations are carried out
to validate and showcase the performance of the Kalman
filtering scheme. The employed system parameters are listed
in Tab. I below. As common in quantum mechanics, the

TABLE I
PARAMETER VALUES USED FOR THE SIMULATIONS.

parameter symbol value

decay rate Γ 10s−1

resonance frequency ωR 5Γ
Rabi frequency Ω 3Γ
irradiation frequency ωF 4Γ

interaction strength M 1s−1

detection efficiency η 80%

parameters here are expressed in terms of the decay rate
Γ, while the time t will be in units of Γ−1. Note, that the
values are chosen arbitrarily and are not based on an actual
physical system. Furthermore, without loss of generality, the
system is initially prepared purely in the excited state

x0 =
[

0 0 1
]⊤

.

The time evolution of the driven and damped two-level sys-
tem resulting from this setup is visualised in Fig. 2. Here, the
dimensionless Bloch states x j(t), j = 1,2,3 are interpreted

−1

0

1 −1

0

1
−1

0

1

x1

x2

x3

unit sphere
stochastic sample trajectory
ensemble average solution

Fig. 2. Visualisation of the time evolution of the continuously measured
driven and damped two-level system (14), Tab. I in Euclidean space.

as Euclidean coordinates. Since ∑x2
j ≤ 1, the trajectories

are confined to a unit sphere, where pure states lie on the
surface and mixed states inside [31]. One possible realisation
of the stochastic system evolution (14) is depicted in black,
while the deterministic ensemble average solution is shown
in light blue. As can be seen, the diffusive measurement
backaction g(x)dW has a non-negligible stochastic influence
on the trajectory. Due to the Lindbladian damping terms,
the system converges to a periodic stationary oscillation,
while the continuous excitation (3) prevents the system from
reaching a steady state. The corresponding measurement
output is plotted in Fig. 3. Clearly, due to the division by

0 2 4 6 8 10

−100
−50

0
50

100
y h(x)

time t
(
Γ−1)

Fig. 3. Measurement record (15) corresponding to the stochastic trajectory
shown in Fig. 2.

∆t in (15), the stochastic term affecting the measurement
signal has a significantly higher variance than the state
diffusion. Nonetheless, the Kalman filter is able to exploit
these measurements, as shown in the following.

The employed Kalman filter is set up with the experimen-
tally tuned covariance matrices

P+
0 = diag

([
1 1 1

])
,

Q = diag
(
∆t

[
1 1 1

10

])
,

R =
1√
∆t

,
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for the initial condition guess, the process noise and the
measurement noise, respectively, and initially assumes a
totally mixed state with equal probabilities

x̂+0 =
[

0 0 0
]⊤

.

The simulation results of the state estimation are presented
in Fig. 4. The three subplots show both the evolution of the

−2

0

2 x1 x̂1

−2

0

2 x2 x̂2

0 2 4 6 8 10

−2

0

2 x3 x̂3

time t
(
Γ−1)

Fig. 4. System (14) and observer (17–19) state evolution.

true state x(t) in black and the evolution of the observer
state x̂(t) in light blue. As can be seen, it takes the Kalman
filter roughly 4 to 5Γ−1 to correct the initial estimation
error and to accurately reproduce the true system states.
This is achieved by rather aggressive corrections (18) in the
beginning, while after convergence, the a priori estimates
are updated much less. This is shown in Fig. 5. It turns

0 2 4 6 8 10
0

0.25

0.5

0.75

1
∥x̂+k+1 − x̂−k+1∥

time t
(
Γ−1)

Fig. 5. Norm of the conditioning on the latest measurement result done
by the Kalman filter corrector.

out, that despite the high variance measurement noise, the
Kalman filter does not simply propagate the deterministic
drift dynamics of the system, but actually conditions quite
heavily on the latest measurement result in order to improve
the estimation accuracy.

In order to quantitatively assess the observer performance,

the fidelity [32]

F (ρ, ρ̂) = Tr
{√√

ρ ρ̂
√

ρ
}2

, F ∈ [0, 1] , (20)

which provides a distance measure between two quantum
states (F = 1 implying equality), is computed for the re-
constructed density operator ρ and its observed counterpart
ρ̂ . This is plotted in Fig. 6 over time. Clearly, the fidelity

0 2 4 6 8 10

0

0.5

1

Fmax F (ρ, ρ̂)

time t
(
Γ−1)

Fig. 6. Fidelity between the reconstructed density operator ρ and its
estimate ρ̂ .

asymptotically converges to its upper bound Fmax = 1, im-
plying the Kalman filter successfully reconstructs the full
density operator ρ from the measurement data (15) using
the underlying system model (14).

A. Parameter estimation

In the following, the Kalman filter (17–19) is modified to
not only estimate the density operator, but also key system
parameters, i.e. the resonance frequency ωR and the decay
rate Γ. In control engineering, it is common for these pa-
rameters to be introduced as additional time-constant system
states x4 = ωR, x5 = Γ, ẋ4,5 = 0, such that observing the
augmented state vector automatically provides an estimate
for these parameters as well. The theoretical feasibility of this
approach is again shown through Lemma 1, whose observ-
ability condition is also satisfied by the extended system. The
practical applicability is demonstrated in Fig. 7 and 8. Here,

0 2 4 6 8 10

0
Γ

20

40
ωR
60

ω̂R Γ̂

time t
(
Γ−1)

Fig. 7. Evolution of the observer parameter states corresponding to the
resonance frequency ωR and the decay rate Γ.

the same simulation as before has been carried out, however,
incorrect initial values x̂+4 (0) = 25, x̂+5 (0) = 0 were assumed
for the parameter states of the observer. Fig. 7 shows the
time evolution of the observed resonance frequency in light
blue and the decay rate in dark blue, respectively. As can
be seen, both asymptotically converge against their actual
value. Contemporaneously, the regular system states are
estimated, the corresponding fidelity is plotted in Fig. 8.
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0 2 4 6 8 10

0

0.5

1

Fmax F (ρ, ρ̂)

time t
(
Γ−1)

Fig. 8. Fidelity between the reconstructed density operator ρ and its
estimate ρ̂ , when observing additionally the resonance frequency ωR and
the decay rate Γ.

Naturally, the Kalman filter takes more time than before to
precisely replicate the evolution of the true density operator,
but ultimately, it does prove successful. In conclusion, the
observer does not only provide an accurate online estimate
of the system’s resonance frequency ωR and its decay rate Γ,
but also reconstructs the full quantum state ρ of the system.

V. CONCLUSION

In this paper, an engineering approach to a quantum
control problem has been studied. Using an extended Kalman
filter, we were able to dynamically estimate the full state and
identify multiple parameters of an open two-level quantum
system. Thereby, the observer showed fast convergence and
achieved high fidelities.

Overall, the conditioning of the system dynamics on
the measurement results in quantum mechanics poses an
intriguing premise for future research. Hence, expanding on
the groundwork established here, we aim to explore different
feedback control strategies and analyse a wider range of
systems.
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