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Machine learning enhanced 
evaluation of semiconductor 
quantum dots
Emilio Corcione 1,3*, Fabian Jakob 1,3,5, Lukas Wagner 2,3,4, Raphael Joos 2,3,4, 
Andre Bisquerra 2,3,4, Marcel Schmidt 6, Andreas D. Wieck 6, Arne Ludwig 6, Michael Jetter 2,3,4, 
Simone L. Portalupi 2,3,4, Peter Michler 2,3,4 & Cristina Tarín 1,3

A key challenge in quantum photonics today is the efficient and on-demand generation of high-quality 
single photons and entangled photon pairs. In this regard, one of the most promising types of emitters 
are semiconductor quantum dots, fluorescent nanostructures also described as artificial atoms. The 
main technological challenge in upscaling to an industrial level is the typically random spatial and 
spectral distribution in their growth. Furthermore, depending on the intended application, different 
requirements are imposed on a quantum dot, which are reflected in its spectral properties. Given that 
an in-depth suitability analysis is lengthy and costly, it is common practice to pre-select promising 
candidate quantum dots using their emission spectrum. Currently, this is done by hand. Therefore, to 
automate and expedite this process, in this paper, we propose a data-driven machine-learning-based 
method of evaluating the applicability of a semiconductor quantum dot as single photon source. 
For this, first, a minimally redundant, but maximally relevant feature representation for quantum 
dot emission spectra is derived by combining conventional spectral analysis with an autoencoding 
convolutional neural network. The obtained feature vector is subsequently used as input to a neural 
network regression model, which is specifically designed to not only return a rating score, gauging the 
technical suitability of a quantum dot, but also a measure of confidence for its evaluation. For training 
and testing, a large dataset of self-assembled InAs/GaAs semiconductor quantum dot emission 
spectra is used, partially labelled by a team of experts in the field. Overall, highly convincing results 
are achieved, as quantum dots are reliably evaluated correctly. Note, that the presented methodology 
can account for different spectral requirements and is applicable regardless of the underlying 
photonic structure, fabrication method and material composition. We therefore consider it the first 
step towards a fully integrated evaluation framework for quantum dots, proving the use of machine 
learning beneficial in the advancement of future quantum technologies.

Keywords Quantum technology, Semiconductor quantum dot, Single photon source, Machine-learning-
based evaluation, Convolutional autoencoder, Neural network regression

Advances in fundamental research and engineering over the past years have enabled the active control of systems 
within the framework of quantum mechanics, leading to the emergence of next generation quantum technologies. 
Development in this field is motivated by two main aspects: On the one hand, the progressive miniaturisation 
of devices down to the nanoscale inevitably requires the explicit consideration of quantum  effects1,2. On the 
other hand, in some areas, a superior performance is expected, for instance in metrology, where sensors based 
on quantum principles offer a significantly higher  sensitivity3,4. At current, efforts focus on the transition from 
proof-of-concept laboratory applications to commercially available  products5,6.

One promising branch of quantum technology is applied quantum optics, or photonics, which is built around 
the single photon, i.e. the elementary particle of  light7,8. In general, photonic solutions are attractive since 
photons provide several degrees of freedom to encode information and combine high mobility with intrinsic 
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robustness against decoherence and environmental noise. This makes them particularly advantageous, e.g. for 
long-distance communication through optical  fibres9,10. Besides, photons are comparatively easy to manipulate, 
making photonic setups experimentally very  accessible11,12. Obviously, the development of an efficient and 
on-demand single photon source is key, with brightness, purity and indistinguishability of the emitted photons 
taking  priority13,14. Many setups today make use of spontaneous parametric down-conversion, where a pair of 
entangled photons is generated from laser light in a non-linear birefringent crystal. While photons produced 
this way are highly indistinguishable, there is an intrinsic trade-off between brightness and single photon purity 
due to the Poissonian statistics of down-conversion15,16. Improving on these limiting factors, quantum light 
sources embedding semiconductor quantum dots in photonic structures or cavity resonators have increasingly 
established themselves as promising candidates and valid  alternative17,18.

Semiconductor quantum dots
Semiconductor quantum dots (QD) are nanoscale heterostructures with a lower band gap between the disjoint 
valence and the conduction band than their semiconductor environment. Their small size in terms of the de 
Broglie wavelength of electrons confines charge carriers (electrons, holes) in all three spatial dimensions, which 
results in a band structure allowing for discretised, i.e. quantised electronic states resembling the shells of 
 atoms13,19. Their energetic landscape is graphically outlined in depth in Fig. 1a. Here, photons are represented as 
blue wavelets, while solid arrows trace optical transitions and dotted arrows indicate non-radiative relaxation. 
As shown, under above-band laser irradiation (dark blue), an electron is promoted from the low-energy valence 
band to the high-energy conduction band by absorbing a photon whose energy exceeds the band gap. Through 
non-radiative energy dissipation, the excited electron and the remaining hole relax to the respective lowest energy 
state of the QD (s-shell), forming a bound pair called exciton. This subsequently fluorescently recombines, i.e. 
the electron radiatively decays by emitting a single photon with the energy of the occupied QD state (light blue). 
The fluorescence wavelength is dependent on the quantisation of the QD states, which, in return, is directly 
determined by the size and geometry of the  QD20,21.

Interestingly, additional charge carriers can typically be found in a QD, causing real QD spectra to exhibit 
multiple emission lines. This is showcased in Fig. 1b, where the spectra of the excitation laser (dark blue) and 
the QD emission (light blue) are schematically plotted as functions of the photon wavelength �.

While there are several fabrication techniques and material compositions for the realisation of QDs, for this 
work, we consider self-assembled InAs QD samples grown in the Stranski–Krastanow mode on a GaAs platform 
using molecular beam  epitaxy22. A schematic cross-section of such an InAs/GaAs QD wafer is given in Fig. 1c. 
Despite having state-of-the-art performance in their photon emission properties, as a result of self-assembly, 
these QDs grow randomly distributed in space. On top of that, even when synthesised under the same growth 
conditions, their size can vary from dot to dot, resulting in different quantum confinement and therefore different 
emission  wavelengths23. This implies, that in order to perform some intended experiment, a suitable QD has 
to be found on a given wafer. This is exemplarily illustrated in Fig. 2a, where a confocal µ-photoluminescence 
intensity  map24 of a representative InAs/GaAs wafer is shown. The image is recorded using the measurement 
setup schematised in Fig. 2b: an above-band laser is scanned across the sample in a 50× 50µm2 area, while the 
QD luminescence is collected and analysed in a spectrometer. Plotting the intensity over the spatial position 
yields the colour map on the left, where QDs appear as bright spots over a dark background. The normalised 
emission spectra I(�) of the yellow encircled QDs are given in Fig. 3. All three emit at a fluorescence wavelength 
of about 900 nm . However, while in the first spectrum one optical transition is predominant, in the second one, 
in contrast, several transitions are excited simultaneously, resulting in the spectrum having multiple peaks. The 
third one, finally, besides having a significantly worse signal-to-noise ratio and an elevated baseline, exhibits 
a broadband feature in its emission spectrum at around 920 nm . For use as single photon sources in photonic 
systems, QDs ideally emit at only one specific, spectrally isolated wavelength with high intensity. In this regard, 
only the first QD appears to be applicable. Nevertheless, this does not mean that the other two are to be discarded 
straight away. For instance, with more sophisticated excitation schemes a single desired optical transition can 
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Figure 1.  (a) Visual abstract of the fluorescent single photon emission of semiconductor QDs. Above-band 
excitation promotes an electron to the conduction band, from where it non-radiatively relaxes to the s-shell 
in the QD. The electron subsequently recombines with the electron hole left behind in the valence band and 
thereby emits a single photon with the energy of the QD state. (b) Schematic spectrum of the excitation laser 
(dark blue) and the QD emission (light blue). (c) Schematic side view of a InAs/GaAs QD sample formed 
through epitaxial self-assembly.
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be addressed. Equally, spectrally matching a photonic resonator to the driven transition and exploiting cavity 
quantum electrodynamic effects can prove  advantageous25,26. Then again, a seemingly perfect QD photon source 
can turn out to be unfit on closer inspection, e.g. in a polarisation  measurement27 or a surface  topography28. 
Overall, this implies the suitability of a semiconductor QD as single photon source cannot be definitively 
decided solely based on its emission spectrum, but that further analyses are necessary. However, given that 
these are usually either time-consuming and/or resource expensive promising candidates must be pre-selected. 
Currently, this is done by hand: specifically trained experts consider the emission spectra of all candidate QDs 
on a given sample and assess based on their subjective experience whether they meet the spectral requirements 
for additional in-depth investigations and an eventual application. This evaluation is neither trivial, nor are there 
any quantified conventions for it. Both in research and industrial applications, this manual selection process 
represents an actual bottleneck limiting the productivity and thus the scalability of photonic technologies.

Contribution
This paper directly addresses this challenge. Here, we propose a data-driven machine-learning-based solution 
for the automated evaluation of the applicability of a semiconductor QD as single photon source based on its 
emission spectrum. Specifically, the goal is to build an expert system approximating the current experience-based 
suitability analysis. With this contribution, the (pre-)selection of viable QDs can be parallelised and processing 
times can be significantly reduced. Moreover, the technical relevance of this paper increases in the long-term, as 
methods like the one presented here are a necessary requirement for a large scale production of semiconductor 
QD single photon sources and thus for an industrial implementation of photonic technologies. To the authors’ 
best knowledge, at the time of writing, no such approach has yet been reported in the literature. In Ref.29, 
a machine-learning-based classifier of quantum sources is proposed, although it is limited to discriminating 
between the emission of single and non-single photons from nitrogen-vacancy centres in diamond. Otherwise, 
the focus lies on using machine learning to enhance the QD fabrication process  itself30,31. In particular, a variety 
of methods is employed to either provide the design parameters of the  synthesis32,33 or to make predictions about 
the resulting optical  properties34,35.

This paper is structured as follows: after covering the physical background and relevance of the topic in the 
introduction, next, the evaluation algorithm is presented in depth and contextualized within the state of the art. 
It is subsequently implemented and its performance showcased, which, finally, allows for a discussion of the 
proposed solution.
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Figure 2.  Confocal µ-photoluminescence intensity measurement. (a) Normalised emission intensity in a 50×50 
μm2 area of a representative self-assembled InAs/GaAs QD sample. Three exemplary QDs are marked in yellow. 
(b) Schematic measurement setup: the QD sample is placed inside a Helium cryostat and excited by an above-
band laser guided through a beamsplitter. The luminescence signal is collected and sent to a spectrometer.
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Figure 3.  Emission spectra of the QDs encircled in Fig. 2a from left to right. The spectra are recorded between 
895 nm and 925 nm wavelength in 1024 px and normalised independently.
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Quantum dot evaluation method
The development of a method for evaluating the photonic usability of a semiconductor QD based on its emis-
sion spectrum is mathematically equivalent to the identification of a function f : I(�) → s that maps a given 
emission spectrum I(�) to a rating score s ∈ [0, 1] , with s = 1 encoding a potentially perfect single photon source 
recommended for further analyses, and s = 0 a most likely unfit candidate. As discussed in section “Semicon-
ductor quantum dots”, given the complexity of this gauging combined with the lack of established conventions 
and the subjectivity involved, an analytical derivation of such a function is highly impractical. Therefore, in this 
paper, a data-driven regressive approach is proposed instead.

Regression analysis is the statistical estimation of a functional relationship between an independent input 
u ∈ U and a dependent output y = f (u) ∈ Y by minimising a loss function

over the parameter vector β ∈ B of a pre-defined regression model freg : U ×B → Y using a set of available 
training data Dtrain =

{(

u
(i)
train, y

(i)
train = f

(

u
(i)
train

)) ∣
∣
∣ i = 1, . . . , N

}

 . As this involves detecting underlying pat-
terns in the data, limiting redundancies and noise by reducing the dimension of the function space can signifi-
cantly improve the overall performance of the regression. With high-dimensional data, it is therefore common 
practice to first compress the independent variable u ∈ U into a lower-dimensional feature vector x(u) ∈ X ⊂ U 
from which to subsequently predict the dependent target variable y = f̂ (x)36,37.

Within the scope of this paper, this implies, a meaningful feature representation x is to be derived for the 
emission spectrum u = I(�) of a semiconductor QD. For this, we consider both explainable spectral parameters, 
extracted by conventional methods of signal processing, as well as an abstract latent representation learned 
by an autoencoder. A subset X of minimally redundant, but maximally relevant features, that still sufficiently 
accurately describes the  data38,39, is then selected by correlation analysis and used as input of a regression model 
f̂reg(x, β) . Here, we propose a multivariate neural network regressor, specifically designed to not only predict 
a technical suitability score ŷ1 = ŝ , but to also return a measure of confidence ŷ2 = σ for its estimate. A visual 
abstract of the overall scheme is given in Fig. 4. The top half outlines the pre-processing and training, whereas 
the bottom half visualises the workflow for predicting the output ŷtest of some unknown test input utest , with its 
feature representation xtest being passed to the now optimised regression model. The following sections elaborate 
on the neural network regression analysis, highlighted in yellow, and the feature engineering, marked in blue.

Neural network regression analysis
Overall, the performance of any regression analysis is determined by the ability of the trained model to generalise, 
i.e. to make accurate predictions for unknown inputs xtest . Here, besides the quality of the training data and the 
numerical optimisation, the selection of the model function f̂reg itself is key. In this regard, different regression 
techniques are distinguished. Most common is linear regression, which is easily implemented, but limited in 
its  application40. For non-linear systems, kernel-based methods like support vector  machines41 or Gaussian 
process models are widely  established42. Lastly, artificial neural networks (NN) are a class of universal function 
 approximators43 with a characteristic parameter structure of hierarchical layers intended to resemble intercon-
nected biological  neurons44. A fully connected feed-forward NN regression model is defined as

where L ∈ N denotes the number of layers. Besides the first layer ℓ = 1 , which is passed the feature vector 
x(0) = x ∈ X , each layer ℓ is passed the output of the previous layer x(ℓ−1) ∈ R

dℓ−1 as input. The last layer, finally, 
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Figure 4.  Visual abstract of a regression analysis scheme (yellow) including feature engineering (blue). In this 
paper, the independent input u corresponds to a measured QD emission spectrum I(�) , and the dependent 
output y to the evaluation score s ranking the QD’s technical usability as single photon source between 0 and 1 
with confidence σ.
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returns the model predictions ŷ = x(L) . A schematic depiction of the setup of an arbitrary layer ℓ is given in 
Fig. 5. Each layer comprises a non-linear activation function ϕ(ℓ) : R → R which is applied element-wise to 
the output of an affine mapping

where the weight matrix W (ℓ) ∈ R
dℓ×dℓ−1 and the bias vector b(ℓ) ∈ R

dℓ are the model parameters to be optimised 
during training. Note, that the general matrix multiplication in (3) can also be replaced by a discrete convolution 
with a set of learnable  kernels45.

Compared to conventional regression models, NN regressors stand out for their huge parameter space, which 
is further extended by the inclusion of additional connections, shortcuts or feedbacks between the layers in more 
sophisticated network  architectures46,47. Because of this, NNs are particularly good at recognising patterns in 
unstructured data and making generalising predictions. Accordingly, they have been applied successfully to a 
wide range of problems, from the calibration of biosensing  systems48, to the evaluation of chess  positions49 and 
the identification of objects in  images50.

Feature engineering
As discussed above, the use of properly optimised features is crucial for pattern detection in data analysis and 
thus for regressive function modelling, improving the overall performance and the prediction accuracy in par-
ticular. Like all spectral data, QD emission spectra are characterised by some rather self-evident features, first 
and foremost, the number of peaks npeak ∈ N , which infers how many optical transitions are excited at the same 
time. However, considering an ideal single photon source emits at only one specific wavelength, usually only 
the brightest peak with the maximum emission intensity umax ∈ R

+ is of interest. Its relative dominance can be 
quantified by the ratio of its amplitude to the height of the next larger peak, denoted by rdom ∈ R

+ . Besides, its 
sharpness, best described by its full width at half maximum wFWHM ∈ R

+ , and its minimum distance dmin ∈ R
+ 

to neighbouring peaks determine the feasibility of isolating the corresponding level transition for single photon 
generation. Note, that at this stage, the exact emission wavelength is of secondary importance and will hence 
not be taken into account.

All of the mentioned features represent explainable parameters that can be extracted from the data using 
conventional methods of signal processing. Here, we employ the Ordered Statistics Constant False Alarm Rate 
(OS-CFAR) peak detection algorithm, which is commonly used in radar technology, as it is capable of adapting 
the detection threshold to the surrounding noise  baseline51. As showcased in Fig. 6, this prevents spectral 
broadband features to be identified as a collection of subsequent individual peaks. Once the peaks have been 
localised within the spectrum, the algebraic computation of the corresponding feature values is straightforward.

(3)
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Figure 5.  Schematic representation of a layer in a feed-forward NN.
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These features, however, are not necessarily sufficient to describe every aspect of an emission spectrum 
and to fully evaluate QDs in regard to their suitability as single photon sources. Therefore, additional abstract 
features are extracted using a so-called autoencoder, an unsupervised machine learning technique for non-linear 
dimensionality  reduction52 and representation  learning53.

At its core, an autoencoder is a NN regression model estimating the identity function that projects an 
independent variable u ∈ U onto itself. However, the network is set up as such, that the output of one intermediate 
layer is of reduced  dimension54,55. As can be seen in Fig. 7, this implies, the information contained in the data 
vector u is first encoded into a lower-dimensional latent feature vector ξ ∈ � ⊂ U and subsequently decoded 
again, in order to produce a reconstruction û ∈ U of the original input. Training the network by minimising the 
reconstruction error erecon = �u− û�2 ∈ R requires as little information as possible to be lost when propagating 
the data vector through the network. Hence, the latent representation ξ is automatically optimised as well and 
can subsequently be extracted by evaluating only the encoder part of the network (blue). Note, that, while highly 
informative, the features derived this way are not necessarily explainable or unique. The residual reconstruction 
error erecon , meanwhile, provides a measure for the loss of information and thus for deviations from learned 
patterns and regularities. It is therefore often considered in fault detection, for instance to catch sensor or actuator 
 errors56,57. In the context of this paper, it is exploited to quantify noise and spectral oddities, like the broadband 
feature in Fig. 6.

As outlined in section “Quantum dot evaluation method”, subsequently, a set of minimally redundant, but 
maximally relevant features is to be selected to be used as input x for the NN regression model estimating a QD’s 
viability as single photon source. The results hereof are presented in the next section.

Results
In this section, the proposed evaluation algorithm is implemented and validated. For this, we consider single 
layer InAs/GaAs semiconductor QDs within a n–i–n diode structure. The QDs are located in the vertical antinode 
of a planar cavity formed by a bottom distributed Bragg reflector (DBR) and a lower reflectivity top DBR. 
More information on the samples can be found  in22, alongside comprehensive optical and quantum optical 
characterisations. Using an above-band excitation laser close to saturation, a dataset of 25 000 emission spectra 
is recorded in a spectral range of 30 nm in 1024 px , thus giving an input dimension of dim U = 1024 . Moreover, 
a total of 300 spectra is labelled redundantly by a team of seven experienced experts in the field, i.e. personal 
biases are reduced to a minimum by the assignment of a score average s between 0 and 1 that rates the viability 
of the emitting QD as source of single, indistinguishable photons with isolated, bright emission lines and low 
background. An approximate representation of the score distribution is given by the histogram in Fig. 8.

Excluding the marginal extrema, the distribution is roughly Gaussian (dark blue curve). Lastly, to augment 
the data, each sample is spectrally shifted twice by a random number of pixels. As this does not affect any spec-
tral properties qualitatively, the size of both the labelled and unlabelled dataset is increased by a factor of three, 
which benefits the training of the various machine learning models. For this, as is common practice, 80% of the 
data is used, with the remaining 20% being retained for testing and to track possible overfitting. Note, that this 
split is applied to both the labelled and the unlabelled dataset.

u ∈U û ∈U

� ∈ Ξ⊂U

encoder decoder

Figure 7.  Schematic representation of an autoencoder NN. The input vector u is first encoded into a low-
dimensional latent feature representation ξ , which is subsequently decoded again to produce an estimate û of the 
input.
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In the following, first, the results of the autoencoder feature extraction are presented, then, a suitable subset 
of features is selected by correlation analysis, and eventually, the performance of the rating score prediction by 
NN regression is showcased.

Autoencoder representation learning
For the derivation of an abstract feature representation for QD emission spectra, in this paper, an autoencoder 
with latent space dimension dim � = 16 is proposed. This is the result of a hyper-parameter optimisation and 
represents a trade-off between the loss of too much information in case the latent space dimension is too small, 
and a reduced correlation of the autoencoder states with the rating score in case the latent space dimension is 
too large. Taking normalised input data with �u�max = 1 , the encoder part handles the feature learning and the 
dimensionality reduction. For the former, typically, deep convolutional NNs are employed, which excel at pattern 
detection, but potentially suffer from vanishing or exploding gradients during  optimisation58. In this regard, 
residual blocks, i.e. sequences of two convolutional layers with a skip connection, offer some numeric benefits, 
as any derivation yields at least an identity matrix. Moreover, the mapping of linear relations is  facilitated59,60.

For the dimensionality reduction, in return, max pooling is state of the art. This is a downsampling technique, 
where the output of a convolutional layer is divided into blocks of equal size, with only the maximum value 
of each block being propagated further. Since this way the most dominant entries are retained, the overall 
performance of the network is not significantly impaired. On the contrary, max pooling introduces a certain 
degree of translational invariance and improves the computational efficiency of the  network61,62.

Here, the encoder is set up as a series of four residual units, each consisting of two residual blocks followed 
by max pooling (ref. Fig. 9). As denoted, the results of the convolutional mappings are batch normalised before 
being passed to the rectified linear unit (ReLU) activation  function63

In each residual unit, the four convolutional layers have the same structure and hyper-parameters (output shape, 
kernel size, stride, padding), whereas a max pooling dimensionality reduction by factor three is adopted through-
out. Lastly, the compact latent representation ξ ∈ �, dim � = 16 is produced by a fully connected feed-forward 
layer. For the subsequent recovery of the input vector and the associated increase in dimensionality, the decoder 
comprises six sequential transposed convolutional  layers64. Since the input data is normalised, the sigmoid 
activation function

is used here to constrain the output value range such that �û�max ≤ 1 . A summary of the autoencoder’s complete 
architecture is given in Table 1. Overall, the autoencoder has 233313 training parameters, which are optimised 
with respect to the squared ℓ2-norm using the computationally efficient ADAM algorithm with learning rate 
 scheduling65 and a batch size of 512. As the autoencoder training is unsupervised, the unlabelled dataset is used 
for it. Fig. 10 displays the training and test learning curve of the autoencoder over 200 epochs of optimisation. 
Clearly, both decay approximately exponentially towards 0, indicating that the autoencoder’s learnt latent 
representation is optimised without significant overfitting. The performance of the fully trained autoencoder is 
further showcased in Fig. 11, where the reconstructions of the three model spectra from Fig. 3 are shown. Note, 
that these are part of the test data and therefore not previously known. As can be seen, the first two spectra are 
recovered reasonably well, with all major peaks captured and the reconstruction errors correspondingly low. In 
contrast, the autoencoder struggles to reconstruct the third spectrum, as both the worse signal-to-noise ratio 
and the spectral broadband feature constitute sever deviations from learnt patterns and regularities. As discussed 
in section “Feature engineering”, the reconstruction error erecon is considered as feature precisely to take such 
cases into account. On the other hand, no physical meaning could be inferred for the autoencoder’s latent states.

Feature selection
Combining the autoencoder’s latent representation ξ and reconstruction error erecon with the aforementioned 
characteristic spectral parameters, overall, a set of 22 features

(4)ϕReLU(x) = max (0, x).

(5)ϕ sigmoid(x) =
1

1+ e−x
∈ [0, 1]

conv. mapping
batch norm.

ReLU activation

conv. mapping
batch norm.

ReLU activation

+

conv. mapping
batch norm.

ReLU activation

conv. mapping
batch norm.

ReLU activation

+ 3 → 1 max
pooling

residual block 111 residual block 222

Figure 9.  Schematic visualisation of a residual unit, consisting of two residual blocks followed by max pooling.
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can be extracted from each QD emission spectrum u = I(�) . These are, however, neither inherently independent, 
nor necessarily impacting the suitability evaluation subject to this paper. Therefore, two correlation studies are 
performed to select a subset of minimally redundant, but maximally relevant features to be used as input vector 
x for the NN regression model. For both, the absolute of Spearman’s rank correlation coefficient ρ ∈ [−1, 1] is 
used, as it is not limited to linear relationships, but rather measures  monotonicity66. First, using the available 
labelled training data, the correlation between each feature and the rating score is computed. The results hereof 
are listed in Table 2. In particular, the reconstruction error erecon and the maximum emission intensity umax stand 
out for their strong correlation of ρ > 0.9 with the target value. Subsequently, only features with a correlation 
coefficient ρ > 0.6 are retained, which reduces the set of features under consideration to

(6)
{

ξ1, . . . , ξ16, erecon, npeak, rdom, umax, wFWHM, dmin

}

(7)
{

ξ2, ξ7, ξ13, erecon, rdom, umax

}

,

Table 1.  Autoencoder architecture summary.

Layer Output shape Parameter

Residual unit Kernel 3, stride 3, padding 1 4× 341 248

Residual unit Kernel 3, stride 3, padding 1 16× 113 3344

Residual unit Kernel 3, stride 3, padding 1 32× 37 13,216

Residual unit Kernel 3, stride 3, padding 1 64× 12 52,032

Flatten 1× 768 –

Linear feed-forward 1× 16 = dim � 12,304

Linear feed-forward 1× 4608 78,336

Reshape 128× 36 –

Transposed conv. layer Kernel 7, stride 3 64× 112 57,664

Transposed conv. layer Kernel 6, stride 3 32× 339 12,448

Transposed conv. layer Kernel 6, stride 3 16× 1020 3152

Transposed conv. layer Kernel 3, stride 1, padding 1 8× 1020 424

Transposed conv. layer Kernel 3, stride 1, padding 1 4× 1020 116

Transposed conv. layer Kernel 5, stride 1 1× 1024 = dim U 29
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Figure 10.  Average training and test loss of the autoencoder during training.
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Figure 11.  Autoencoder reconstruction of three model QD emission spectra.
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where the significant amount of latent features justifies the use of the autoencoder. The remaining features are 
subject to a cross-correlation analysis. The results are visualised in Fig. 12. Clearly, the reconstruction error 
erecon and the maximum emission intensity umax are also correlated comparatively strongly with each other. 
Furthermore, both show a moderate cross-correlation with the remaining latent features ξ2, 7, 13 . Since for the 
reconstruction error this can be attributed to the shared origin, i.e. the autoencoder, the maximum emission 
intensity is omitted in order to limit redundancies. This leaves five features, that combined form the input vector

of the NN regression model estimating a QD’s viability as single photon source. The comparatively high relevance 
and impact of the reconstruction error erecon is revisited in section “Evaluation score prediction”.

Evaluation score prediction
The last building block of the proposed QD evaluation scheme is the NN regression model. Considering the goal 
is to replicate an expert’s experienced based decision process with its inherent subjectivity, the network is set up 
as such, that not only a rating score prediction ŝ ∈ [0, 1] is returned, but also a measure of confidence σ ∈ R for 
it. To do so, using the training data, the Gaussian negative log-likelihood loss function

is minimised over β for the multivariate NN regression model f̂reg, NN with vector-valued output. For accurate 
predictions, this causes the optimiser to drive σ → 0 , whereas for inaccurate predictions, σ must inevitably 
increase for the second summand to be minimised. Note, that this is accomplished without supervision. Given 
that (9) is the negative natural logarithm of a normal distribution, σ can be interpreted as standard deviation of 
the prediction and is hence referred to as  such67.

The regression model itself is designed as a fully connected feed-forward NN with four layers, using the 
sigmoid activation function (4) throughout to constrain the predictions to ŝ ∈ [0, 1] . Table 3 provides further 
details regarding the architecture of the network. As before, the ADAM optimisation algorithm is employed 
with a batch size of 64 and the resulting training and test learning curves over 2000 epochs are given in Fig. 13. 
Despite several outliers, both curves clearly decay and the network is accordingly optimised with negligible 
overfitting. In fact, considering the widespread R2 score as accuracy metric for regression  analysis68, a training 
score of 96%, and a test score of 95% is achieved. For reference, taking the reconstruction error, i.e. the strongest 
feature, as single input for the regression model such that x = erecon , yields a R2 test score of 84%. Considering 
the reconstruction error primarily quantifies noise, this implies, that differentiating candidate QD spectra solely 
with respect to the signal-to-noise ratio would lead to significantly worse results.

(8)x =
[
ξ2 ξ7 ξ13 erecon rdom

]⊤ ∈ X , dim X = 5

(9)
J = ln(

√
2π σ 2)+ 1

2

∥
∥s − ŝ

∥
∥2

σ 2

s.t.

[
ŝ
σ

]

= f̂reg, NN(x, β).

Table 2.  Absolute Spearman correlation between each feature and the rating score. Significant values with 
|ρ| > 0.6 are in bold.

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11

0.438 0.6470.6470.647 0.198 0.106 0.509 0.391 0.6940.6940.694 0.094 0.244 0.376 0.276

ξ12 ξ13 ξ14 ξ15 ξ16 erecon npeak rdom umax wFWHM dmin

0.208 0.6370.6370.637 0.588 0.064 0.559 0.9210.9210.921 0.488 0.6480.6480.648 0.9080.9080.908 0.398 0.379

ξ2 ξ7 ξ13 erecon rdom umax
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ξ13

erecon
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cr
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o
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Figure 12.  Absolute of Spearman’s rank cross-correlation coefficient between features in (7).
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The general performance of the fully trained network is plotted in Fig. 14. Here, the predicted rating scores 
are plotted over the ground truth, on the left for one entire test batch, on the right for randomly selected test 
samples of equal label increment with the estimated 95% confidence interval ( ±1.96 σ ). The identity represents 
perfect estimation. As can be seen, the predictions are overall quite accurate with a mean absolute deviation 
of 0.05 corresponding to a relative error of 5%. In particular, the assignment of rating score zero is both very 
precise and with high confidence, whereas low, but non-zero ratings are slightly overestimated. Nonetheless, 
the ground truth always lies within the estimated 95% confidence interval and the predictions are therefore 
throughout reasonably good.

To illustratively showcase the practical use of the proposed method, two example spectra are given in 
Fig. 15, alongside their respective label predictions. Both QDs are, solely based on their emission spectrum, to 
be considered as candidates of mediocre quality. For the model spectra given in Fig. 3, meanwhile, rating scores 
of ŝ = {0.95, 0.45, 0.01} are predicted from left to right, whereas they had been labelled s = {0.97, 0.5, 0.1} , 

Table 3.  NN regression model architecture summary.

Layer Output shape Parameter

linear feed-forward 1× 20 120

linear feed-forward 1× 20 420

linear feed-forward 1× 20 420

linear feed-forward 1× 2 42
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Figure 13.  Average training and test loss of the NN regression model during training.
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Figure 14.  Prediction of the NN regression model, plotted as function of the actual label. Left: Predictions for 
one test batch. Right: Predictions for test samples with equidistant true labels (increment 0.1).
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Figure 15.  Additional QD emission spectra examples, drawn from the labelled test dataset.
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respectively. As can be seen, both the expert as well as the proposed expert system agree on their evaluation, 
highlighting the potential for automatisation in this field.

Discussion and outlook
The main objective of this paper was the development of a method to automatically evaluate the viability of a 
semiconductor QD as single photon source based on its emission spectrum. For this, combining spectral analysis 
and an autoencoder, a suitable feature representation for QD emission spectra is derived and a NN regression 
model is trained on a given set of expert labelled data. Overall, the proposed solution achieves highly convincing 
results by reliably predicting accurate ratings for unknown test inputs. Embedding the evaluation algorithm in a 
user application and establishing a required minimum rating enables the automation of the manual pre-selection 
of candidate QDs for further analyses. This does not only significantly reduce processing times, but also intro-
duces a certain degree of objectivity and comparability. Overall, this work showcases how machine learning can 
support and benefit the ongoing development of quantum technologies by solving practical challenges.

However, several aspects are to be pointed out in this context. First, in this paper, a regressive rather than 
a classification based approach is employed. This has the advantage, that the cut-off score can be chosen freely 
to render the selection more conservative or more radical. In fact, it can even be defined as a function of the 
estimated measure of confidence of the rating prediction. Secondly, note, that the data used here to train the 
regression model was labelled by a team of experts to eliminate any personal bias. In practice, however, different 
experts work on different topics and therefore have different spectral requirements. In particular, the distinc-
tion between exciton, biexciton and trion excitation is technically highly relevant. This can be accounted for by 
optimising the network only with regard to the labels assigned by one expert. In this case, the trained model will 
replicate their personal assessment and will be tuned to their application scenario. Since only a comparatively 
small dataset is required to be re-labelled and the cross-training of the prediction model is of low computational 
effort, adapting the proposed evaluation method is considerably more efficient than adjusting a rating system 
not based on machine learning, for which a plethora of decision variables and threshold values would have to 
be fine-tuned. Note, that the demand for QDs of one specific emission wavelength can be met by simply filter-
ing the evaluated and selected spectra accordingly, which is why this parameter was not included as feature in 
the analysis. Finally, it should be mentioned, that while this work focusses on self-assembled QDs grown in 
the Stranski–Krastanow mode by molecular beam epitaxy, comparable challenges arise with other fabrication 
methods as well. However, since the solution proposed here is transferable, the same approach can be adopted 
for each fabrication method, material composition and photonic structure.

In the long-term, the framework presented in this paper is to be expanded to a fully automated evaluation tool 
for semiconductor QDs, capable of taking into account not only emission spectra, but also further measurements 
and custom requirements, in order to streamline and support the synthesis of high quality single photon sources.

Data and code availability
Both code and data will be made available by the corresponding author upon reasonable request.
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